Nuclear envelope structure. 1992

G N Dessev
Northwestern University Medical School, Chicago, Illinois.

The past 18 months have seen significant advances in our knowledge of the constituents of the nuclear envelope, their interactions during interphase and the mechanisms involved in their mitotic dynamics. Although most of the new data are in general agreement with, and contribute detail to, our traditional image of the nuclear envelope, a few observations appear to mark the beginning of new and important directions in research.

UI MeSH Term Description Entries
D009685 Nuclear Envelope The membrane system of the CELL NUCLEUS that surrounds the nucleoplasm. It consists of two concentric membranes separated by the perinuclear space. The structures of the envelope where it opens to the cytoplasm are called the nuclear pores (NUCLEAR PORE). Nuclear Membrane,Envelope, Nuclear,Envelopes, Nuclear,Membrane, Nuclear,Membranes, Nuclear,Nuclear Envelopes,Nuclear Membranes
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D034882 Lamins Nuclear matrix proteins that are structural components of the NUCLEAR LAMINA. They are found in most multicellular organisms. Lamin

Related Publications

G N Dessev
January 1965, Postepy biochemii,
G N Dessev
September 2009, Traffic (Copenhagen, Denmark),
G N Dessev
July 1974, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
G N Dessev
July 2005, Journal of cell science,
G N Dessev
January 1974, International review of cytology,
G N Dessev
January 2009, Methods in molecular biology (Clifton, N.J.),
G N Dessev
January 2006, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!