Crystal structure of human prostaglandin F synthase (AKR1C3). 2004

Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045-7534, USA.

Prostaglandin H(2) (PGH(2)) formed from arachidonic acid is an unstable intermediate and is efficiently converted into more stable arachidonate metabolites (PGD(2), PGE(2), and PGF(2)) by the action of three groups of enzymes. Prostaglandin F synthase (PGFS) was first purified from bovine lung and catalyzes the formation of 9 alpha,11 beta-PGF(2) from PGD(2) and PGF(2)(alpha) from PGH(2) in the presence of NADPH. Human PGFS is 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) type II and has PGFS activity and 3 alpha-HSD activity. Human lung PGFS has been crystallized with the cofactor NADP(+) and the substrate PGD(2), and with the cofactor NADPH and the inhibitor rutin. These complex structures have been determined at 1.69 A resolution. PGFS has an (alpha/beta)(8) barrel structure. The cofactor and substrate or inhibitor bind in a cavity at the C-terminal end of the barrel. The cofactor binds deeply in the cavity and has extensive interactions with PGFS through hydrogen bonds, whereas the substrate (PGD(2)) is located above the bound cofactor and has little interaction with PGFS. Despite being largely structurally different from PGD(2), rutin is located at the same site of PGD(2), and its catechol and rhamnose moieties are involved in hydrogen bonds with PGFS. The catalytic site of PGFS contains the conserved Y55 and H117 residues. The carbonyl O(11) of PGD(2) and the hydroxyl O(13) of rutin are involved in hydrogen bonds with Y55 and H117. The cyclopentane ring of PGD(2) and the phenyl ring of rutin face the re-side of the nicotinamide ring of the cofactor. On the basis of the catalytic geometry, a direct hydride transfer from NADPH to PGD(2) would be a reasonable catalytic mechanism. The hydride transfer is facilitated by protonation of carbonyl O(11) of PGD(2) from either H117 (at low pH) or Y55 (at high pH). Since the substrate binding cavity of PGFS is relatively large in comparison with those of AKR1C1 and AKR1C2, PGFS (AKR1C3) could catalyze the reduction and/or oxidation reactions of various compounds over a relatively wide pH range.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D006911 Hydroxyprostaglandin Dehydrogenases Catalyzes reversibly the oxidation of hydroxyl groups of prostaglandins. Hydroxyprostaglandin Dehydrogenase,Prostacyclin Dehydrogenase,Dehydrogenase, Hydroxyprostaglandin,Dehydrogenase, Prostacyclin,Dehydrogenases, Hydroxyprostaglandin
D006913 Hydroxysteroid Dehydrogenases Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-. Hydroxysteroid Dehydrogenase,Dehydrogenase, Hydroxysteroid,Dehydrogenases, Hydroxysteroid

Related Publications

Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
June 2019, Molecular and cellular endocrinology,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
January 1991, Advances in prostaglandin, thromboxane, and leukotriene research,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
August 2002, Prostaglandins & other lipid mediators,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
September 1997, Cell,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
December 1999, FEBS letters,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
December 2006, Journal of molecular biology,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
November 2001, The EMBO journal,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
January 1994, Nature,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
March 2009, Chemico-biological interactions,
Junichi Komoto, and Taro Yamada, and Kikuko Watanabe, and Fusao Takusagawa
September 2013, Acta biochimica et biophysica Sinica,
Copied contents to your clipboard!