Transforming growth factor-beta induces Cdk2 relocalization to the cytoplasm coincident with dephosphorylation of retinoblastoma tumor suppressor protein. 2004

Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.

BACKGROUND The transforming growth factor-beta (TGF-beta) signaling pathway functions to prevent tumorigenesis, and loss of sensitivity to TGF-beta-mediated cell cycle arrest is nearly ubiquitous among human cancers. Our previous studies demonstrated that rapamycin potentiates TGF-beta-induced cell cycle arrest in nontransformed epithelial cells and partially restores TGF-beta-induced growth arrest of some human cancer cell lines. Growth arrest correlated with increased binding of p21 and p27 to cyclin-dependent kinase-2 (Cdk2), and inhibition of Cdk2 kinase activity. However, it was unclear how TGF-beta caused increased binding of p21 and p27 to Cdk2. METHODS Cell fractionation and immunofluorescence microscopy experiments were performed to examine the effect of TGF-beta on the intracellular localization of Cdk2, p21, and p27. Kinase assays were performed on cytoplasmic and nuclear extracts to determine how TGF-beta altered Cdk2 activity in both subcellular compartments. RESULTS In breast epithelial cells treatment with TGF-beta induced a decrease in nuclear Cdk2 concentrations and relocalization of Cdk2 to the cytoplasm. Cdk2 relocalization to the cytoplasm correlated with dephosphorylation of nuclear retinoblastoma tumor suppressor protein and decreased nuclear Cdk2 activity. In these epithelial cell lines, p21 and p27 were localized primarily in the cytoplasm. Decreases in nuclear Cdk2 concentrations correlated with increased binding of Cdk2 to cytoplasmic p21 and p27. CONCLUSIONS Cooperative growth arrest induced by treatment with TGF-beta + rapamycin causes inhibition of nuclear Cdk2 activity through multiple mechanisms, including Cdk2 relocalization to the cytoplasm, increased p27 and p21 binding to Cdk2, and increased phosphorylation of nuclear Cdk2 on its inhibitory site, Tyr15.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D016160 Retinoblastoma Protein Product of the retinoblastoma tumor suppressor gene. It is a nuclear phosphoprotein hypothesized to normally act as an inhibitor of cell proliferation. Rb protein is absent in retinoblastoma cell lines. It also has been shown to form complexes with the adenovirus E1A protein, the SV40 T antigen, and the human papilloma virus E7 protein. Rb Protein,Retinoblastoma Nuclear Phosphoprotein p105-Rb,p105-Rb Protein,Rb Gene Product,Rb1 Gene Product,Retinoblastoma Nuclear Phosphoprotein p105 Rb,p105 Rb Protein

Related Publications

Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
October 2012, The Journal of biological chemistry,
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
December 1997, Molecular and cellular biology,
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
August 1999, The Journal of biological chemistry,
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
November 2008, Archives of ophthalmology (Chicago, Ill. : 1960),
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
April 1996, American journal of reproductive immunology (New York, N.Y. : 1989),
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
January 1996, Current opinion in oncology,
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
February 1995, Current opinion in genetics & development,
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
January 1994, Advances in cancer research,
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
November 2008, Cancer research,
Kimberly A Brown, and Richard L Roberts, and Carlos L Arteaga, and Brian K Law
January 2017, Oncogene,
Copied contents to your clipboard!