Engraftment of acute myeloid leukemia in NOD/SCID mice is independent of CXCR4 and predicts poor patient survival. 2004

Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
Department of Human Genetics, Baylor College of Medicine, Houston, Texas, USA.

The aim of this study was to investigate factors influencing the engraftment potential of acute myeloid leukemia (AML) CD34+ cells in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. We examined the relationship between engraftment, CXCR4 expression on CD34+ and CD34+CD38- cells, and patient (Pt) clinical/laboratory characteristics in 44 samples from 11 Pts. Engraftment, evaluated by Southern blot and CD45 flow cytometric analyses, was observed in murine bone marrow of 6 of 11 Pt samples, ranging from 0.1% to 73.9% by Southern blot and from 0.1%-36.8% by flow cytometry. Poor Pt prognosis was inversely correlated with engraftment; the median overall survival was 95.9 weeks for Pts whose cells did not engraft and 26.1 weeks for those whose cells did engraft (p = 0.012, log-rank test). No other clinical/laboratory variable predicted engraftment. No correlation between the level of CXCR4 expression on AML cells and engraftment was observed. Cells with virtually absent CXCR4 expression were able to engraft, and cells from two Pts with high expression levels of CXCR4 did not engraft. Furthermore, anti-CXCR4 antibody failed to block the engraftment of AML cells into NOD/SCID mice. In conclusion, we demonstrated that CXCR4 is not critical for the engraftment of AML CD34+ cells in NOD/SCID mice. The model may, however, reflect the clinical course of the disease.

UI MeSH Term Description Entries
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015470 Leukemia, Myeloid, Acute Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES. Leukemia, Myelogenous, Acute,Leukemia, Nonlymphocytic, Acute,Myeloid Leukemia, Acute,Nonlymphocytic Leukemia, Acute,ANLL,Acute Myelogenous Leukemia,Acute Myeloid Leukemia,Acute Myeloid Leukemia with Maturation,Acute Myeloid Leukemia without Maturation,Leukemia, Acute Myelogenous,Leukemia, Acute Myeloid,Leukemia, Myeloblastic, Acute,Leukemia, Myelocytic, Acute,Leukemia, Myeloid, Acute, M1,Leukemia, Myeloid, Acute, M2,Leukemia, Nonlymphoblastic, Acute,Myeloblastic Leukemia, Acute,Myelocytic Leukemia, Acute,Myelogenous Leukemia, Acute,Myeloid Leukemia, Acute, M1,Myeloid Leukemia, Acute, M2,Nonlymphoblastic Leukemia, Acute,Acute Myeloblastic Leukemia,Acute Myeloblastic Leukemias,Acute Myelocytic Leukemia,Acute Myelocytic Leukemias,Acute Myelogenous Leukemias,Acute Myeloid Leukemias,Acute Nonlymphoblastic Leukemia,Acute Nonlymphoblastic Leukemias,Acute Nonlymphocytic Leukemia,Acute Nonlymphocytic Leukemias,Leukemia, Acute Myeloblastic,Leukemia, Acute Myelocytic,Leukemia, Acute Nonlymphoblastic,Leukemia, Acute Nonlymphocytic,Leukemias, Acute Myeloblastic,Leukemias, Acute Myelocytic,Leukemias, Acute Myelogenous,Leukemias, Acute Myeloid,Leukemias, Acute Nonlymphoblastic,Leukemias, Acute Nonlymphocytic,Myeloblastic Leukemias, Acute,Myelocytic Leukemias, Acute,Myelogenous Leukemias, Acute,Myeloid Leukemias, Acute,Nonlymphoblastic Leukemias, Acute,Nonlymphocytic Leukemias, Acute
D016513 Mice, SCID Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice. SCID Mice,SCID-hu Mice,Severe Combined Immunodeficient Mice,Immunodeficient Mice, Severe Combined,Mouse, SCID,Mouse, SCID-hu,Mice, SCID-hu,Mouse, SCID hu,SCID Mouse,SCID hu Mice,SCID-hu Mouse
D016688 Mice, Inbred NOD A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked. Non-Obese Diabetic Mice,Mice, NOD,Mouse, Inbred NOD,Mouse, NOD,Non-Obese Diabetic Mouse,Nonobese Diabetic Mice,Nonobese Diabetic Mouse,Diabetic Mice, Non-Obese,Diabetic Mice, Nonobese,Diabetic Mouse, Non-Obese,Diabetic Mouse, Nonobese,Inbred NOD Mice,Inbred NOD Mouse,Mice, Non-Obese Diabetic,Mice, Nonobese Diabetic,Mouse, Non-Obese Diabetic,Mouse, Nonobese Diabetic,NOD Mice,NOD Mice, Inbred,NOD Mouse,NOD Mouse, Inbred,Non Obese Diabetic Mice,Non Obese Diabetic Mouse
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
April 2003, Leukemia,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
September 1998, Hematological oncology,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
March 2001, Experimental hematology,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
January 2010, Leukemia research,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
September 1995, Leukemia,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
February 1999, Science (New York, N.Y.),
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
October 2012, Cancer biology & therapy,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
April 2004, Cancer research,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
January 2023, Acta haematologica,
Giuseppe Monaco, and Marina Konopleva, and Mark Munsell, and Clinton Leysath, and Rui-Yu Wang, and C Ellen Jackson, and Martin Korbling, and Elihu Estey, and John Belmont, and Michael Andreeff
March 2012, Clinical cancer research : an official journal of the American Association for Cancer Research,
Copied contents to your clipboard!