Influence of modulators of epoxide metabolism on the cytotoxicity of trans-anethole in freshly isolated rat hepatocytes. 1992

A D Marshall, and J Caldwell
Department of Pharmacology and Toxicology, St Mary's Hospital Medical School, Imperial College of Science, Technology and Medicine, London, UK.

The effect of modulating epoxide metabolism by inhibiting microsomal and cytosolic epoxide hydrolases and depleting glutathione, on the cytotoxicity of trans-anethole has been examined in freshly isolated rat hepatocytes in suspension. Hepatocytes derived from female Sprague-Dawley CD rats by collagenase perfusion were incubated in suspension and sampled at intervals over a 6-hr period. Cytotoxicity was assessed by the leakage of lactate dehydrogenase into the culture medium and in the cells after lysis. Glutathione was determined by fluorimetry. Anethole showed a dose-dependent cytotoxicity at concentrations ranging from 5 x 10(-4) to 5 x 10(-3) M, with concentrations of 10(-3) M and above causing greater than 63% leakage of lactate dehydrogenase in 6 hr. Microsomal epoxide hydrolase was inhibited by trichloropropene oxide (10(-4) M) and cyclohexene oxide (10(-3) M), and cytosolic epoxide hydrolase by 4-fluorochalcone oxide (5 x 10(-4) M). Cellular glutathione was depleted by diethyl maleate (5 x 10(-4) M), and its synthesis inhibited by 2.5 x 10(-3) M-L-buthionine (S,R)-sulphoximine. Suspensions treated with a sub-cytotoxic concentration of anethole (5 x 10(-4) M) showed a rapid increase in cytotoxicity when 4-fluorochalcone oxide was present (complete loss of viability within 2 hr), while pretreatment of hepatocytes with diethyl maleate in combination with buthionine sulphoximine, to deplete glutathione, slowly increased the cytotoxic response at later times (after 4 hr of incubation). The association of the effects of 4-fluorochalcone oxide with the inhibition of cytosolic epoxide hydrolase is strengthened by the inability of chalcone oxide, a close structural analogue of 4-fluorochalcone oxide, which has no effect on epoxide hydrolase or glutathione conjugation, to influence the effects of anethole on hepatocytes. These data are discussed in terms of the role of anethole epoxide in the cytotoxicity of trans-anethole.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008298 Maleates Derivatives of maleic acid (the structural formula (COO-)-C
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002599 Chalcone An aromatic KETONE that forms the core molecule of CHALCONES. Benzalacetophenone,Benzylideneacetophenone,1,3-Diphenyl-2-Propen-1-One,Chalkone,1,3 Diphenyl 2 Propen 1 One
D003510 Cyclohexanes Six-carbon alicyclic hydrocarbons.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

A D Marshall, and J Caldwell
June 2013, Journal of biochemical and molecular toxicology,
A D Marshall, and J Caldwell
October 2020, Molecules (Basel, Switzerland),
A D Marshall, and J Caldwell
September 1984, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
A D Marshall, and J Caldwell
January 1998, BioFactors (Oxford, England),
A D Marshall, and J Caldwell
January 1995, Chirality,
A D Marshall, and J Caldwell
January 1984, Drug metabolism and disposition: the biological fate of chemicals,
A D Marshall, and J Caldwell
February 1996, Toxicology in vitro : an international journal published in association with BIBRA,
A D Marshall, and J Caldwell
January 2014, Advanced pharmaceutical bulletin,
A D Marshall, and J Caldwell
January 1991, Chemico-biological interactions,
Copied contents to your clipboard!