Heat shock preconditioning and eicosanoid pathways modulate caspase 3-like activity in superficially injured isolated guinea pig gastric mucosa. 2004

N Oksala, and E Alhava, and H Paimela
Department of Surgery, Kuopio University Hospital, Helsinki, Finland.

BACKGROUND After superficial mucosal injury, the disturbed gastric epithelial continuity is restored by cellular migration. Caspase-3 is an enzyme responsible for the execution of stress-induced apoptosis. Interestingly, heat shock proteins (Hsp) including Hsp60 are capable of modulating caspase-3 activity. Interestingly, we have demonstrated that heat shock preconditioning upregulates Hsp synthesis and inhibits restitution and cell proliferation via mechanisms related to de novo protein synthesis and eicosanoid pathways, both of which are crucial in the regulation of apoptosis and gastric mucosal defense systems. OBJECTIVE To assess whether caspase-3 activity is affected by heat shock preconditioning and associated pharmacological modulations after standard superficial injury to allow development of cytoprotective strategies. METHODS Guinea pig gastric mucosae were mounted and perfused in paired Ussing chambers. After heat shock (HS) preconditioning (42 degrees C) for 30 min, a superficial injury was induced (1.25 mol/l NaCl) followed by 3 h recovery. For mechanistic studies, the mucosa was exposed to 30 micromol/l arachidonic acid (AA) as a substrate for eicosanoid pathways, to 50 micromol/l quercetin (Q) to inhibit lipoxygenases, to 50 micromol/l indomethacin (In) to inhibit cyclo-oxygenases, or to 150 micromol/l cycloheximide (CHX) to inhibit de novo protein synthesis. After the experiment, the mucosa was prepared for analysis of caspase-3 activity. Hsp60 expression was analyzed to monitor the induction of heat shock response. RESULTS HS upregulated Hsp60 expression, indicating induction of the heat shock response without an effect on basal caspase-3 activity. Superficial injury itself did not affect caspase-3 activity nor Hsp60 synthesis. In all the experiments, exposure to CHX abolished caspase-3 activity and Hsp60 synthesis. AA+Q increased, Q decreased, while In+AA and In+AA+Q abolished caspase-3 activity independent of alterations in Hsp60 synthesis. Upon exposure to In+Q, HS decreased caspase-3 activity and upregulated Hsp60 synthesis. CONCLUSIONS Caspase-3 activity in isolated guinea pig gastric mucosa is regulated by mechanisms dependent on de novo protein synthesis and eicosanoid pathways but is not strictly related to Hsp synthesis. Upon modulation of the eicosanoid pathways, HS may be utilized to simultaneously decrease caspase-3 activity and increase Hsp synthesis. Modulations of the eicosanoid pathways may be utilized to reduce caspase-3 activity also upon normothermic conditions suggesting a novel mechanism by which caspase-3 is regulated in the gastric mucosa.

UI MeSH Term Description Entries
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015777 Eicosanoids A class of compounds named after and generally derived from C20 fatty acids (EICOSANOIC ACIDS) that includes PROSTAGLANDINS; LEUKOTRIENES; THROMBOXANES, and HYDROXYEICOSATETRAENOIC ACIDS. They have hormone-like effects mediated by specialized receptors (RECEPTORS, EICOSANOID). Eicosanoid,Icosanoid,Icosanoids
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D053148 Caspase 3 A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA. CASP3,Apopain,Caspase-3,Pro-Caspase-3,Procaspase-3,Pro Caspase 3,Procaspase 3
D020169 Caspases A family of intracellular CYSTEINE ENDOPEPTIDASES that play a role in regulating INFLAMMATION and APOPTOSIS. They specifically cleave peptides at a CYSTEINE amino acid that follows an ASPARTIC ACID residue. Caspases are activated by proteolytic cleavage of a precursor form to yield large and small subunits that form the enzyme. Since the cleavage site within precursors matches the specificity of caspases, sequential activation of precursors by activated caspases can occur. Caspase

Related Publications

N Oksala, and E Alhava, and H Paimela
July 2000, American journal of physiology. Gastrointestinal and liver physiology,
N Oksala, and E Alhava, and H Paimela
June 1995, The American journal of physiology,
N Oksala, and E Alhava, and H Paimela
December 1980, The American journal of physiology,
N Oksala, and E Alhava, and H Paimela
August 1980, Biochimica et biophysica acta,
N Oksala, and E Alhava, and H Paimela
January 2004, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
N Oksala, and E Alhava, and H Paimela
December 1978, Biochemical and biophysical research communications,
N Oksala, and E Alhava, and H Paimela
December 1966, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
N Oksala, and E Alhava, and H Paimela
June 1988, The Journal of physiology,
N Oksala, and E Alhava, and H Paimela
July 1996, The American journal of physiology,
Copied contents to your clipboard!