The large resolvase TnpX is the only transposon-encoded protein required for transposition of the Tn4451/3 family of integrative mobilizable elements. 2004

Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
Australian Bacterial Pathogenesis Programme, Department of Microbiology, Monash University, Victoria 3800, Australia. dena.lyras@med.monash.edu.au

Chloramphenicol resistance in Clostridium perfringens and Clostridium difficile is often encoded by catP genes located within the 6.3 kb integrative mobilizable elements Tn4451 and Tn4453 respectively. This family of transposons is capable of being mobilized into a recipient cell in the presence of another conjugative element. Transposition is mediated by the large resolvase TnpX, which excises the element to produce a circular molecule that is the integrative intermediate. In this study, in vivo deletion analysis of the transposon-encoded tnpV and tnpY genes showed that they are not essential for excision or integration of this group of elements. Similar studies on tnpW suggested either that this gene is not essential for these functions or that TnpW does not function when provided in trans. Development and use of an in vivo insertion assay showed that TnpX is the only transposon-encoded protein required for the integration reaction. Subsequently, a TnpXLEH6 protein was purified and shown to catalyse excision in vitro in the absence of any other protein and preferentially to excise a supercoiled DNA substrate. In summary, these studies have shown that TnpX is the only transposon protein required in vivo and in vitro for the excision process and that, like excision, integration also occurs by a serine recombinase-mediated site-specific recombination mechanism.

UI MeSH Term Description Entries
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002702 Chloramphenicol Resistance Nonsusceptibility of bacteria to the action of CHLORAMPHENICOL, a potent inhibitor of protein synthesis in the 50S ribosomal subunit where amino acids are added to nascent bacterial polypeptides. Chloramphenicol Resistances
D003016 Clostridium perfringens The most common etiologic agent of GAS GANGRENE. It is differentiable into several distinct types based on the distribution of twelve different toxins. Clostridium welchii
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D016360 Clostridioides difficile A common inhabitant of the colon flora in human infants and sometimes in adults. The type species Clostridioides difficile is formerly known as Clostridium difficile. It is a causative agent for CLOSTRIDIOIDES INFECTIONS and is associated with PSEUDOMEMBRANOUS ENTEROCOLITIS in patients receiving antibiotic therapy. Clostridium difficile
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D045564 Transposon Resolvases Recombinases that involved in the propagation of DNA TRANSPOSONS. They bind to transposon sequences found at two different sites along the same stretch of DNA and bring them into close proximity. The enzymes then catalyze the double strand cleavage, exchange of double strands and rejoining of DNA helices so that the DNA transposon is formed into a circular PLASMID. Resolvases, Transposon,TnpR Protein

Related Publications

Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
November 2000, Molecular microbiology,
Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
February 1998, Molecular microbiology,
Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
September 1994, Journal of bacteriology,
Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
June 1992, Journal of bacteriology,
Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
December 2000, Journal of bacteriology,
Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
March 1996, Genes & development,
Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
July 1991, Journal of bacteriology,
Dena Lyras, and Vicki Adams, and Isabelle Lucet, and Julian I Rood
January 1985, Molecular & general genetics : MGG,
Copied contents to your clipboard!