Cell inactivation by heavy charged particles. 1992

E A Blakely
Cell and Molecular Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.

The inactivation of cells resulting in lethal or aberrant effects by charged particles is of growing interest. Charged particles at extremely high LET are capable of completely eliminating cell-type and cell-line differences in repair capacity. It is still not clear however whether the repair systems are inactivated, or merely that heavy-ion lesions are less repairable. Studies correlating the particle inactivation dose of radioresistant cells with intact DNA analyzed with pulse field gel electrophoresis and other techniques may be useful, but more experiments are also needed to assess the fidelity of repair. For particle irradiations between 40-100 keV/microns there is however evidence for particle-induced activation of specific genes in mammalian cells, and certain repair processes in bacteria. New data are available on the inactivation of developmental processes in several systems including seeds, and cells of the nematode C. elegans. Future experimental and theoretical modeling research emphasis should focus on exploring particle-induced inactivation of endpoints assessing functionality and not just lethality, and on analyzing molecular damage and genetic effects arising in damaged but non-inactivated survivors. The discrete nature of selective types of particle damage as a function of radiation quality indicates the value of accelerated ions as probes of normal and aberrant biological processes. Information obtained from molecular analyses of damage and repair must however be integrated into the context of cellular and tissue functions of the organism.

UI MeSH Term Description Entries
D002107 Caenorhabditis A genus of small free-living nematodes. Two species, CAENORHABDITIS ELEGANS and C. briggsae are much used in studies of genetics, development, aging, muscle chemistry, and neuroanatomy. Caenorhabditides
D002477 Cells The fundamental, structural, and functional units or subunits of living organisms. They are composed of CYTOPLASM containing various ORGANELLES and a CELL MEMBRANE boundary. Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E A Blakely
January 1985, Radiation research. Supplement,
E A Blakely
January 2002, Radiation protection dosimetry,
E A Blakely
December 2004, Uchu Seibutsu Kagaku,
E A Blakely
June 1974, Journal of radiation research,
E A Blakely
December 2004, Uchu Seibutsu Kagaku,
E A Blakely
December 2002, Journal of radiation research,
E A Blakely
January 1973, Life sciences and space research,
E A Blakely
December 1982, International journal of radiation oncology, biology, physics,
Copied contents to your clipboard!