Oxidative stress and adaptation of the infant heart to hypoxia and ischemia. 2004

John E Baker
Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, USA. jbaker@mcw.edu

The potential contribution of oxidative stress to cardioprotection in infants induced by adaptation to chronic hypoxia and by ischemic preconditioning is poorly understood. Under conditions of oxidative stress, reactive oxygen species and reactive nitrogen species may contribute to phenotypic changes in hearts adapted to chronic hypoxia and to the pathogenesis of myocardial injury during both ischemia/reperfusion and hypoxia/reoxygenation. Hearts from infant rabbits normoxic from birth can be preconditioned by brief periods of ischemia. In contrast, hearts from infant rabbits adapted to hypoxia from birth appear resistant to ischemic preconditioning. Chronically hypoxic infant rabbit hearts are already resistant to ischemia compared with age-matched normoxic controls, and thus additional cardioprotection by ischemic preconditioning may not be possible. Endothelial nitric oxide synthase (NOS3) protein and its product nitric oxide are increased, but not NOS3 message, in chronically hypoxic infant hearts to protect against ischemia. Chronic hypoxia from birth also increases cardioprotection of infant hearts by increasing association of heat shock protein 90 with NOS3. Normoxic infant hearts also generate more superoxide by an N(omega)-nitro-L-arginine methyl ester-inhibitable mechanism than chronically hypoxic hearts. Thus, NOS3 appears to be critically important in adaptation of infant hearts to chronic hypoxia and in resistance to subsequent ischemia by regulating the production of reactive oxygen and nitrogen species.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006330 Heart Defects, Congenital Developmental abnormalities involving structures of the heart. These defects are present at birth but may be discovered later in life. Congenital Heart Disease,Heart Abnormalities,Abnormality, Heart,Congenital Heart Defect,Congenital Heart Defects,Defects, Congenital Heart,Heart Defect, Congenital,Heart, Malformation Of,Congenital Heart Diseases,Defect, Congenital Heart,Disease, Congenital Heart,Heart Abnormality,Heart Disease, Congenital,Malformation Of Heart,Malformation Of Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

John E Baker
January 2014, Advances in experimental medicine and biology,
John E Baker
October 1995, The American journal of physiology,
John E Baker
March 2005, The Journal of clinical investigation,
John E Baker
February 2008, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Copied contents to your clipboard!