Secondary structure and stability of the selenocysteine insertion sequences (SECIS) for human thioredoxin reductase and glutathione peroxidase. 2004

Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.

We have used high resolution NMR and thermodynamics to characterize the secondary structure and stability of the selenocysteine insertion sequences (SECIS) of human glutathione peroxidase (58 nt) and thioredoxin reductase (51 nt). These sequences are members of the two classes of SECIS recently identified with two distinct structures capable of directing selenocysteine incorporation into proteins in eukaryotes. UV melting experiments showed a single cooperative and reversible transition for each RNA, which indicates the presence of stable secondary structures. Despite their large size, the RNAs gave well resolved NMR spectra for the exchangeable protons. Using NOESY, the imino protons as well as the cytosine amino protons of all of the Watson-Crick base pairs were assigned. In addition, a number of non-canonical base pairs including the wobble G.U pairs were identified. The interbase-pair NOEs allowed definition of the hydrogen-bonded structure of the oligonucleotides, providing an experimental model of the secondary structure of these elements. The derived secondary structures are consistent with several features of the predicted models, but with some important differences, especially regarding the conserved sequence motifs.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D013880 Thioredoxin-Disulfide Reductase A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5 Thioredoxin Reductase (NADPH),NADP-Thioredoxin Reductase,NADPH-Thioredoxin Reductase,Thioredoxin Reductase,NADP Thioredoxin Reductase,NADPH Thioredoxin Reductase,Reductase, NADP-Thioredoxin,Reductase, NADPH-Thioredoxin,Reductase, Thioredoxin,Reductase, Thioredoxin-Disulfide,Thioredoxin Disulfide Reductase
D017279 Selenocysteine A naturally occurring amino acid in both eukaryotic and prokaryotic organisms. It is found in tRNAs and in the catalytic site of some enzymes. The genes for glutathione peroxidase and formate dehydrogenase contain the TGA codon, which codes for this amino acid. L-Alanine, 3-selenyl-,3-Selenylalanine,Selenocysteine, DL-Isomer,3 Selenylalanine,3-selenyl- L-Alanine,L Alanine, 3 selenyl,Selenocysteine, DL Isomer

Related Publications

Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
August 2008, Proteins,
Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
September 1997, Biomedical and environmental sciences : BES,
Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
November 2009, Biochimica et biophysica acta,
Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
January 2000, Antioxidants & redox signaling,
Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
January 1999, European journal of biochemistry,
Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
January 2001, BioFactors (Oxford, England),
Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
June 2001, Biochimica et biophysica acta,
Andres Ramos, and Andrew N Lane, and David Hollingworth, and Teresa W-M Fan
December 1995, The Journal of biological chemistry,
Copied contents to your clipboard!