Effects of head posture on cerebral hemodynamics: its influences on intracranial pressure, cerebral perfusion pressure, and cerebral oxygenation. 2004

Ivan Ng, and Joyce Lim, and Hwee Bee Wong
Department of Neurosurgery, National Neuroscience Institute, and Faculty of Medicine, National University of Singapore, Singapore. ivan_ng@ttsh.com.sg

OBJECTIVE Severely head-injured patients have traditionally been maintained in the head-up position to ameliorate the effects of increased intracranial pressure (ICP). However, it has been reported that the supine position may improve cerebral perfusion pressure (CPP) and outcome. We sought to determine the impact of supine and 30 degrees semirecumbent postures on cerebrovascular dynamics and global as well as regional cerebral oxygenation within 24 hours of trauma. METHODS Patients with a closed head injury and a Glasgow Coma Scale score of 8 or less were included in the study. On admission to the neurocritical care unit, a standardized protocol aimed at minimizing secondary insults was instituted, and the influences of head posture were evaluated after all acute necessary interventions had been performed. ICP, CPP, mean arterial pressure, global cerebral oxygenation, and regional cerebral oxygenation were noted at 0 and 30 degrees of head elevation. RESULTS We studied 38 patients with severe closed head injury. The median Glasgow Coma Scale score was 7.0, and the mean age was 34.05 +/- 16.02 years. ICP was significantly lower at 30 degrees than at 0 degrees of head elevation (P = 0.0005). Mean arterial pressure remained relatively unchanged. CPP was slightly but not significantly higher at 30 degrees than at 0 degrees (P = 0.412). However, global venous cerebral oxygenation and regional cerebral oxygenation were not affected significantly by head elevation. All global venous cerebral oxygenation values were above the critical threshold for ischemia at 0 and 30 degrees. CONCLUSIONS Routine nursing of patients with severe head injury at 30 degrees of head elevation within 24 hours after trauma leads to a consistent reduction of ICP (statistically significant) and an improvement in CPP (although not statistically significant) without concomitant deleterious changes in cerebral oxygenation.

UI MeSH Term Description Entries
D007427 Intracranial Pressure Pressure within the cranial cavity. It is influenced by brain mass, the circulatory system, CSF dynamics, and skull rigidity. Intracerebral Pressure,Subarachnoid Pressure,Intracerebral Pressures,Intracranial Pressures,Pressure, Intracerebral,Pressure, Intracranial,Pressure, Subarachnoid,Pressures, Intracerebral,Pressures, Intracranial,Pressures, Subarachnoid,Subarachnoid Pressures
D007601 Jugular Veins Veins in the neck which drain the brain, face, and neck into the brachiocephalic or subclavian veins. Jugular Vein,Vein, Jugular,Veins, Jugular
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011187 Posture The position or physical attitude of the body. Postures
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

Ivan Ng, and Joyce Lim, and Hwee Bee Wong
November 1986, Journal of neurosurgery,
Ivan Ng, and Joyce Lim, and Hwee Bee Wong
May 2011, Journal of neurosurgery,
Ivan Ng, and Joyce Lim, and Hwee Bee Wong
August 1995, New horizons (Baltimore, Md.),
Ivan Ng, and Joyce Lim, and Hwee Bee Wong
October 1983, Agressologie: revue internationale de physio-biologie et de pharmacologie appliquees aux effets de l'agression,
Ivan Ng, and Joyce Lim, and Hwee Bee Wong
November 1983, British journal of anaesthesia,
Ivan Ng, and Joyce Lim, and Hwee Bee Wong
February 1979, The Journal of surgical research,
Ivan Ng, and Joyce Lim, and Hwee Bee Wong
January 2002, Acta neurochirurgica. Supplement,
Copied contents to your clipboard!