Alveolar cell death in hyperoxia-induced lung injury. 2003

Alessandra Pagano, and Constance Barazzone-Argiroffo
Departments of Pediatrics and Pathology, University of Geneva Medical School, Geneva, Switzerland.

Exposure to high oxygen concentration causes direct oxidative cell damage through increased production of reactive oxygen species. In vivo oxygen-induced lung injury is well characterized in rodents and has been used as a valuable model of human respiratory distress syndrome. Hyperoxia-induced lung injury can be considered as a bimodal process resulting (1) from direct oxygen toxicity and (2) from the accumulation of inflammatory mediators within the lungs. Both apoptosis and necrosis have been described in alveolar cells (mainly epithelial and endothelial) during hyperoxia. While the in vitro response to oxygen seems to be cell type-dependent in tissue cultures, it is still unclear which are the death mechanisms and pathways implicated in vivo. Even though it is not yet possible to distinguish unequivocally between apo-ptosis, necrosis, or other intermediate form(s) of cell death, a great variety of strategies has been shown to prevent alveolar damage and to increase animal survival during hyperoxia. In this review, we summarize the different cell death pathways leading to alveolar damage during hyperoxia, with particular attention to the pivotal role of mitochondria. In addition, we discuss the different protective mechanisms potentially interfering with alveolar cell death.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D018124 Receptors, Tumor Necrosis Factor Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells. Cachectin Receptors,TNF Receptors,Tumor Necrosis Factor Receptors,Receptors, Cachectin,Receptors, TNF,TNF Receptor,Tumor Necrosis Factor Receptor,Receptor, TNF
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Alessandra Pagano, and Constance Barazzone-Argiroffo
April 2019, Zhonghua wei zhong bing ji jiu yi xue,
Alessandra Pagano, and Constance Barazzone-Argiroffo
July 2012, Journal of immunology (Baltimore, Md. : 1950),
Alessandra Pagano, and Constance Barazzone-Argiroffo
January 2000, Molecular genetics and metabolism,
Alessandra Pagano, and Constance Barazzone-Argiroffo
September 2005, American journal of respiratory and critical care medicine,
Alessandra Pagano, and Constance Barazzone-Argiroffo
December 2017, Stem cells translational medicine,
Alessandra Pagano, and Constance Barazzone-Argiroffo
February 1991, American journal of respiratory cell and molecular biology,
Alessandra Pagano, and Constance Barazzone-Argiroffo
October 2015, Critical care medicine,
Alessandra Pagano, and Constance Barazzone-Argiroffo
September 2021, Free radical biology & medicine,
Alessandra Pagano, and Constance Barazzone-Argiroffo
November 2006, Nature medicine,
Copied contents to your clipboard!