Effect of hydrogen peroxide on Ca2+ mobilisation in human platelets through sulphydryl oxidation dependent and independent mechanisms. 2004

Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
Department of Physiology, University of Extremadura, Av Universidad s/n, 10071 Caceres, Spain.

Using Fura-2-loaded human platelets we studied the nature of the mechanisms involved in Ca2+ signalling mediated by H2O2. In a Ca2+-free medium, H2O2 (10 microM-100 mM) induced a concentration-dependent increase in [Ca2+]i. Depletion of either agonist-sensitive or mitochondrial Ca2+ pools reduced this effect while depletion of both stores abolished it. Xestospongin C, an inositol 1,3,5-trisphosphate (IP3) receptor inhibitor, reduced Ca2+ release evoked by 1 mM H2O2 by 45%, indicating that H2O2-induced Ca2+ release involves interaction with IP3 receptors. Blockade of the IP3 turnover by lithium or treatment with U-73122 did not modify H2O2-induced Ca2+ release from the agonist-sensitive pool, suggesting the involvement of a mechanism independent of IP3 generation. H2O2 inhibited Ca2+ reuptake into the agonist-sensitive stores mediated by the sarcoendoplasmic reticulum Ca2+ ATPase (SERCA). Thimerosal (5 microM), a sulphydryl reagent, induced Ca2+ release from the agonist-sensitive stores. This event was impaired by treatment with 2 mM DTT, which also inhibited H2O2-induced Ca2+ release from the agonist-sensitive pool but not from mitochondria. H2O2 reduced the ability of the plasma membrane Ca2+ ATPase (PMCA) to extrude Ca2+ by 75%, an effect that was unaffected by DTT. Consistent with this, thimerosal did not modify the PMCA activity. Finally, exposure to H2O2 triggered platelet aggregation, which was slower than that observed after agonist stimulation. We conclude that H2O2 induced Ca2+ release from agonist-sensitive stores by oxidation of sulphydryl groups in SERCA and the IP3 receptors independently of IP3 generation. In addition, H2O2 induced Ca2+ release from mitochondria and inhibited the PMCA activity by different mechanisms in human platelets.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D053496 Inositol 1,4,5-Trisphosphate Receptors Intracellular receptors that bind to INOSITOL 1,4,5-TRISPHOSPHATE and play an important role in its intracellular signaling. Inositol 1,4,5-trisphosphate receptors are calcium channels that release CALCIUM in response to increased levels of inositol 1,4,5-trisphosphate in the CYTOPLASM. Inositol 1,4,5-Triphosphate Receptor,Inositol 1,4,5-Triphosphate Receptors,Inositol 1,4,5-Trisphosphate Receptor,1,4,5-INTP Receptor,INSP3 Receptor,INSP3 Receptor Type 1,INSP3 Receptor Type 2,INSP3 Receptor Type 3,IP3 Receptor,Inositol 1,4,5-trisphosphate Receptor Subtype 3,Inositol 1,4,5-trisphosphate Receptor Type 1,Inositol 1,4,5-trisphosphate Receptor Type 2,Inositol 1,4,5-trisphosphate Receptor Type 3,Inositol Triphosphate Receptor,Inositol-1,4,5-Triphosphate Receptor,Receptor, Inositol-1,4,5-triphosphate,Type 1 Inositol 1,4,5-trisphosphate Receptor,Type 3 Inositol 1,4,5-trisphosphate Receptor,Receptor, INSP3,Receptor, IP3,Receptor, Inositol Triphosphate,Triphosphate Receptor, Inositol

Related Publications

Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
October 1985, FEBS letters,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
January 2009, Acta pharmacologica Sinica,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
January 1933, The Biochemical journal,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
August 2006, Archives of biochemistry and biophysics,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
January 2004, Cell calcium,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
January 1931, The Biochemical journal,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
September 1982, Biochimica et biophysica acta,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
January 1927, The Biochemical journal,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
January 2012, Bulletin of experimental biology and medicine,
Pedro C Redondo, and Ginés M Salido, and Juan A Rosado, and José A Pariente
December 1959, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
Copied contents to your clipboard!