Cortical ultrastructure and chemoreception in ciliated protists (Ciliophora). 1992

L A Hufnagel
Department of Microbiology, University of Rhode Island, Kingston 02881.

The ciliated protists (ciliates) offer a unique opportunity to explore the relationship between chemoreception and cell structure. Ciliates resemble chemosensory neurons in their responses to stimuli and presence of cilia. Ciliates have highly patterned surfaces that should permit precise localization of chemoreceptors in relation to effector organelles. Furthermore, ciliates are easy to grow and to manipulate genetically; they can also be readily studied biochemically and by electrophysiological techniques. This review contains a comparative description of the ultrastructural features of the ciliate cell surface relevant to chemoreception, examines the structural features of putative chemoreceptive cilia, and provides a summary of the electron microscopic information available so far bearing on chemoreceptive aspects of swimming, feeding, excretion, endocytosis, and sexual responses of ciliates. The electron microscopic identification and localization of specific chemoreceptive macromolecules and organelles at the molecular level have not yet been achieved in ciliates. These await the development of specific probes for chemoreceptor and transduction macromolecules. Nevertheless, the electron microscope has provided a wealth of information about the surface features of ciliates where chemoreception is believed to take place. Such morphological information will prove essential to a complete understanding of reception and transduction at the molecular level. In the ciliates, major questions to be answered relate to the apportionment of chemoreceptive functions between the cilia and cell soma, the global distribution of receptors in relation to the anterior-posterior, dorsal-ventral, and left-right axes of the cell, and the relationship of receptors to ultrastructural components of the cell coat, cell membrane, and cytoskeleton.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D005544 Forecasting The prediction or projection of the nature of future problems or existing conditions based upon the extrapolation or interpretation of existing scientific data or by the application of scientific methodology. Futurology,Projections and Predictions,Future,Predictions and Projections
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012726 Sexual Behavior, Animal Sexual activities of animals. Mating Behavior, Animal,Sex Behavior, Animal,Animal Mating Behavior,Animal Mating Behaviors,Animal Sex Behavior,Animal Sex Behaviors,Animal Sexual Behavior,Animal Sexual Behaviors,Mating Behaviors, Animal,Sex Behaviors, Animal,Sexual Behaviors, Animal
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical

Related Publications

L A Hufnagel
February 1958, Revue de pathologie generale et de physiologie clinique,
L A Hufnagel
January 1980, Archivos de neurobiologia,
L A Hufnagel
May 2006, Environmental pollution (Barking, Essex : 1987),
L A Hufnagel
January 2021, The Journal of eukaryotic microbiology,
Copied contents to your clipboard!