Changes in synaptic ultrastructure during reactive synaptogenesis in the rat dentate gyrus. 2004

Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4.

Advances in stereology, combined with continuing relevance to aging, as well as recovery from disease and injury make the reexamination of reactive synaptogenesis (RS) overdue. Moreover, recent mathematical models have suggested novel aspects of morphology, such as compartmentalization, may have profound effects on synaptic transmission. Given these novel findings, their correlation with other models of synaptic plasticity, and their potential significance for behavioral function, the precise nature of these changes need to be explored through quantitative morphometry. Towards this goal, the synaptic morphology of the dentate gyrus was assessed via serial electron microscopy at 3, 6, 10, 15, and 30 days following unilateral entorhinal cortex lesions. Foremost, the results showed that degree of curvature is a plastic feature of synapses. During RS, concave synapses showed an immediate/long-lasting increase in curvature, suggesting their importance in the compensation response. Flat synapses showed unique changes in growth, having implications for development and activation following synaptogenesis. Moreover, changes in size and curvature showed a different dynamic depending on proximity from damage. In the directly denervated MML, synapses showed an increase in curvature proportionate to increases in size. In the neighboring IML, however, these changes were independent-increases in curvature far surpassed synaptic growth.

UI MeSH Term Description Entries
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D048429 Cell Size The quantity of volume or surface area of CELLS. Cell Volume,Cell Sizes,Cell Volumes,Size, Cell,Sizes, Cell,Volume, Cell,Volumes, Cell
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018891 Dentate Gyrus GRAY MATTER situated above the GYRUS HIPPOCAMPI. It is composed of three layers. The molecular layer is continuous with the HIPPOCAMPUS in the hippocampal fissure. The granular layer consists of closely arranged spherical or oval neurons, called GRANULE CELLS, whose AXONS pass through the polymorphic layer ending on the DENDRITES of PYRAMIDAL CELLS in the hippocampus. Dentate Fascia,Fascia Dentata,Gyrus Dentatus,Area Dentata,CA4 Field of Hippocampal Formation,CA4 Region, Hippocampal,CA4 of Lorente de No,Cornu Ammonis 4 Area,Hilus Gyri Dentati,Hilus of Dentate Gyrus,Hilus of the Fascia Dentata,Hippocampal CA4 Field,Hippocampal Sector CA4,Area Dentatas,CA4 Field, Hippocampal,CA4, Hippocampal Sector,Dentata, Area,Dentata, Fascia,Dentatas, Area,Fascia, Dentate,Field, Hippocampal CA4,Gyrus, Dentate,Hippocampal CA4 Region,Region, Hippocampal CA4,Sector CA4, Hippocampal
D020318 Rats, Long-Evans An outbred strain of rats developed in 1915 by crossing several Wistar Institute white females with a wild gray male. Inbred strains have been derived from this original outbred strain, including Long-Evans cinnamon rats (RATS, INBRED LEC) and Otsuka-Long-Evans-Tokushima Fatty rats (RATS, INBRED OLETF), which are models for Wilson's disease and non-insulin dependent diabetes mellitus, respectively. Long-Evans Rat,Long Evans Rats,Evans Rats, Long,Long Evans Rat,Long-Evans Rats,Rat, Long-Evans,Rats, Long Evans

Related Publications

Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
January 2007, Progress in brain research,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
December 1993, Neuroreport,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
September 1989, Brain research,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
January 1990, Developmental neuroscience,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
August 1998, Neuroscience,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
December 1982, Nature,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
August 1991, Experimental neurology,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
December 1973, Brain research,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
October 1993, Neuroscience letters,
Diano F Marrone, and Janelle C LeBoutillier, and Ted L Petit
January 2016, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
Copied contents to your clipboard!