TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. 2004

Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
Department of Physiology and Biophysics, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE 68198-5850, USA.

Studies were performed to identify the molecular component responsible for store-operated Ca(2+) entry in murine mesangial cells (MMC). Because the canonical transient receptor potential (TRPC) family of proteins was previously shown to comprise Ca(2+)-selective and -nonselective cation channels in a variety of cells, we screened TRPC1-TRPC7 with the use of molecular methods and the fura 2 method to determine their participation as components of the mesangial store-operated Ca(2+) (SOC) channel. Using TRPC-specific primers and RT-PCR, we found that cultured MMC contained mRNA for TRPC1 and TRPC4 but not for TRPC2, TRPC3, TRPC5, TRPC6, and TRPC7. Immunocytochemical staining of MMC revealed predominantly cytoplasmic expression of TRPC1 and plasmalemmal expression of TRPC4. The role of TRPC4 in SOC was determined with TRPC4 antisense and fura 2 ratiometric measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)). SOC was measured as the increase in [Ca(2+)](i) after extracellular Ca(2+) was increased from <10 nM to 1 mM in the continued presence of thapsigargin. We found that TRPC4 antisense, which reduced plasmalemmal expression of TRPC4, inhibited SOC by 83%. Incubation with scrambled TRPC4 oligonucleotides did not affect SOC. Immunohistochemical staining identified expressed TRPC4 in the glomeruli of mouse renal sections. The results of RT-PCR performed to distinguish between TRPC4-alpha and TRPC4-beta were consistent with expression of both isoforms in brain but with only TRPC4-alpha expression in MMC. These studies show that TRPC4-alpha may form the homotetrameric SOC in mouse mesangial cells.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D016257 Fura-2 A fluorescent calcium chelating agent which is used to study intracellular calcium in tissues. Fura 2
D016373 DNA, Antisense DNA that is complementary to the sense strand. (The sense strand has the same sequence as the mRNA transcript. The antisense strand is the template for mRNA synthesis.) Synthetic antisense DNAs are used to hybridize to complementary sequences in target RNAs or DNAs to effect the functioning of specific genes for investigative or therapeutic purposes. Antisense DNA,Anti-Sense DNA,Anti Sense DNA,DNA, Anti-Sense
D050052 TRPC Cation Channels A subgroup of TRP cation channels that contain 3-4 ANKYRIN REPEAT DOMAINS and a conserved C-terminal domain. Members are highly expressed in the CENTRAL NERVOUS SYSTEM. Selectivity for calcium over sodium ranges from 0.5 to 10. Transient Receptor Potential Cation Channel Subfamily C,Transient Receptor Potential Channels, Type C,Cation Channels, TRPC,Channels, TRPC Cation

Related Publications

Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
November 2015, Journal of the American Society of Nephrology : JASN,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
June 2009, Experimental biology and medicine (Maywood, N.J.),
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
June 2000, American journal of physiology. Renal physiology,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
November 2002, American journal of physiology. Cell physiology,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
January 2009, Clinical and experimental pharmacology & physiology,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
May 2006, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
July 2004, Science's STKE : signal transduction knowledge environment,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
January 2003, Cell calcium,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
January 2001, Journal of the American Society of Nephrology : JASN,
Xiaoxia Wang, and Jennifer L Pluznick, and Peilin Wei, and Babu J Padanilam, and Steven C Sansom
May 2004, The Journal of biological chemistry,
Copied contents to your clipboard!