Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. 2004

Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan.

BACKGROUND Genome-wide gene expression programs have been monitored and analyzed in the yeast Saccharomyces cerevisiae, but how cells regulate global gene expression programs in response to environmental changes is still far from being understood. We present a systematic approach to quantitatively characterize the transcriptional regulatory network of the yeast cell cycle. For the interpretative purpose, 20 target genes were selected because their expression patterns fluctuated in a periodic manner concurrent with the cell cycle and peaked at different phases. In addition to the most significant five possible regulators of each specific target gene, the expression pattern of each target gene affected by synergy of the regulators during the cell cycle was characterized. Our first step includes modeling the dynamics of gene expression and extracting the transcription rate from a time-course microarray data. The second step embraces finding the regulators that possess a high correlation with the transcription rate of the target gene, and quantifying the regulatory abilities of the identified regulators. RESULTS Our network discerns not only the role of the activator or repressor for each specific regulator, but also the regulatory ability of the regulator to the transcription rate of the target gene. The highly coordinated regulatory network has identified a group of significant regulators responsible for the gene expression program through the cell cycle progress. This approach may be useful for computing the regulatory ability of the transcriptional regulatory networks in more diverse conditions and in more complex eukaryotes. BACKGROUND Matlab code and test data are available at http://www.ee.nthu.edu.tw/~bschen/quantitative/regulatory_network.htm

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D018797 Cell Cycle Proteins Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS. Cell Division Cycle Proteins,Cell-Cycle Regulatory Proteins,cdc Proteins,Cell Cycle Regulatory Proteins
D020411 Oligonucleotide Array Sequence Analysis Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING. DNA Microarrays,Gene Expression Microarray Analysis,Oligonucleotide Arrays,cDNA Microarrays,DNA Arrays,DNA Chips,DNA Microchips,Gene Chips,Oligodeoxyribonucleotide Array Sequence Analysis,Oligonucleotide Microarrays,Sequence Analysis, Oligonucleotide Array,cDNA Arrays,Array, DNA,Array, Oligonucleotide,Array, cDNA,Arrays, DNA,Arrays, Oligonucleotide,Arrays, cDNA,Chip, DNA,Chip, Gene,Chips, DNA,Chips, Gene,DNA Array,DNA Chip,DNA Microarray,DNA Microchip,Gene Chip,Microarray, DNA,Microarray, Oligonucleotide,Microarray, cDNA,Microarrays, DNA,Microarrays, Oligonucleotide,Microarrays, cDNA,Microchip, DNA,Microchips, DNA,Oligonucleotide Array,Oligonucleotide Microarray,cDNA Array,cDNA Microarray
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
December 2002, Current opinion in cell biology,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
September 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
September 2006, BMC bioinformatics,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
August 2007, Proteins,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
October 2013, Cell cycle (Georgetown, Tex.),
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
April 2010, Journal of theoretical biology,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
January 2007, Genome biology,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
May 2002, Nature genetics,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
March 2009, BMC systems biology,
Hong-Chu Chen, and Hsiao-Ching Lee, and Tsai-Yun Lin, and Wen-Hsiung Li, and Bor-Sen Chen
September 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!