Phenytoin potentiates interleukin-1-induced prostaglandin biosynthesis in human gingival fibroblasts. 1992

T Modéer, and G Brunius, and M Iinuma, and U H Lerner
Department of Pedodontics, Faculty of Odontology, Karolinska Institute, Huddinge, Sweden.

1. The effect of phenytoin (PHT) on prostaglandin E2 (PGE2) biosynthesis in human gingival fibroblasts stimulated by interleukin-1 (IL-1 alpha, IL-1 beta) or by tumour necrosis factor alpha (TNF alpha) was studied. 2. IL-1 alpha (1.5-6.0 ng ml-1) and IL-1 beta (30-300 pg ml-1), dose-dependently, stimulated PGE2 formation, in 24 h cultures, with IL-beta being the most potent agonist. 3. PHT (2.5-20 micrograms ml-1) did not induce PGE2 formation itself but potentiated IL-1 alpha- and IL-1 beta-induced PGE2 formation in the gingival fibroblasts in a manner dependent on the concentrations of both IL-1 and PHT. 4. IL-1 beta (0.1-1.0 ng ml-1) induced release of [3H]-arachidonic acid ([3H]-AA) from prelabelled fibroblasts that was potentiated by PHT (20 micrograms ml-1). 5. TNF-alpha (greater than or equal to 0.01 micrograms ml-1) significantly stimulated the biosynthesis of PGE2 by a process that was potentiated by PHT. 6. Addition of exogenous arachidonic acid (AA) (greater than or equal to 1 microM) caused an increase of PGE2 formation in the fibroblasts that was not potentiated by PHT (20 micrograms ml-1). 7. The results indicate that treatment with PHT results in upregulation of prostaglandin biosynthesis in gingival fibroblasts challenged with IL-1 or TNF alpha, at least partly due to enhanced level of phospholipase A2 activity.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005881 Gingiva Oral tissue surrounding and attached to TEETH. Gums,Interdental Papilla,Papilla, Interdental,Gum
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2

Related Publications

T Modéer, and G Brunius, and M Iinuma, and U H Lerner
July 1996, Journal of clinical periodontology,
T Modéer, and G Brunius, and M Iinuma, and U H Lerner
October 1996, Journal of clinical periodontology,
T Modéer, and G Brunius, and M Iinuma, and U H Lerner
July 1992, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology,
T Modéer, and G Brunius, and M Iinuma, and U H Lerner
December 1988, Nihon Shishubyo Gakkai kaishi,
T Modéer, and G Brunius, and M Iinuma, and U H Lerner
November 1996, Journal of periodontal research,
T Modéer, and G Brunius, and M Iinuma, and U H Lerner
April 2001, Journal of periodontal research,
T Modéer, and G Brunius, and M Iinuma, and U H Lerner
March 2004, Journal of dental research,
T Modéer, and G Brunius, and M Iinuma, and U H Lerner
May 2000, European journal of pharmacology,
Copied contents to your clipboard!