Transient focal cooling at the round window and cochlear nucleus shows round window CAP originates from cochlear neurones alone. 2004

C M McMahon, and D J Brown, and R B Patuzzi
The Auditory Laboratory, Discipline of Physiology, M311, The University of Western Australia, Crawley, WA 6009, Australia.

We have measured the compound action potential (CAP) evoked by very brief high-frequency tone-bursts (20 kHz, 1/4 ms) at the round window (RW) and at the surface of the cochlear nucleus (CN) in guinea pigs before, during and after a localised chilling of either the cochlea or CN, with a non-toxic 'freeze spray'. CN chilling almost abolished the negative-going component of the CAP measured in the CN (generated by the CN and here called the cochlear nucleus response or CNR), leaving a positive-going localised response from the cochlear neurones as they leave the internal auditory meatus. Within 3 min, the CNR recovered to control values. During that time, the N(1) component of the RW CAP was slightly increased and the P(1) was larger, even though the CNR was abolished, indicating that the P(1) was not due to electrotonic spread of current from the CN. The N(2) and successive peaks at the RW were also abolished, but returned after 30 s. When the cochlea was chilled, the RW CAP was initially reduced in amplitude, presumably due to a drop in the number of cochlear neurones spiking in response to sound, but recovered within 3 min to be larger than the control waveform, with a more prominent N(1) peak which was delayed slightly, making the CAP more monophasic. At the same time, the CNR was smaller, presumably due to fewer cochlear neurones responding, but overall the CN CAP was altered little in waveshape. These experiments indicate that that RW CAP is generated almost solely by cochlear neurones. We also suggest that some of the changes in the RW CAP during the chills were due to changes in the firing of the lateral olivo-cochlear system of efferent neurons.

UI MeSH Term Description Entries
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012405 Round Window, Ear Fenestra of the cochlea, an opening in the basal wall between the MIDDLE EAR and the INNER EAR, leading to the cochlea. It is closed by a secondary tympanic membrane. Cochlear Round Window,Fenestra Cochleae,Round Window of Ear,Cochlear Round Windows,Ear Round Window,Round Window, Cochlear,Round Windows, Cochlear,Round Windows, Ear
D017626 Cochlear Nucleus The brain stem nucleus that receives the central input from the cochlear nerve. The cochlear nucleus is located lateral and dorsolateral to the inferior cerebellar peduncles and is functionally divided into dorsal and ventral parts. It is tonotopically organized, performs the first stage of central auditory processing, and projects (directly or indirectly) to higher auditory areas including the superior olivary nuclei, the medial geniculi, the inferior colliculi, and the auditory cortex. Cochlear Nuclei,Nuclei, Cochlear,Nucleus, Cochlear

Related Publications

C M McMahon, and D J Brown, and R B Patuzzi
December 1969, The Annals of otology, rhinology, and laryngology,
C M McMahon, and D J Brown, and R B Patuzzi
December 2023, Audiology research,
C M McMahon, and D J Brown, and R B Patuzzi
August 2007, The Laryngoscope,
C M McMahon, and D J Brown, and R B Patuzzi
June 2004, Journal of the Association for Research in Otolaryngology : JARO,
C M McMahon, and D J Brown, and R B Patuzzi
November 2017, International journal of pediatric otorhinolaryngology,
C M McMahon, and D J Brown, and R B Patuzzi
December 2012, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology,
C M McMahon, and D J Brown, and R B Patuzzi
December 2022, Laryngoscope investigative otolaryngology,
C M McMahon, and D J Brown, and R B Patuzzi
March 2020, The Journal of laryngology and otology,
Copied contents to your clipboard!