Relationship between somatic mutation and neoplastic transformation. 1978

J C Barrett, and P O Ts'o

Somatic mutation and neoplastic transformation of diploid Syrian hamster embryo cells were examined concomitantly. Mutations induced by benzo[a]pyrene and N-methyl-N'-nitro-N-nitrosoguanidine were quantitated at the hypoxanthine phosphoribosyltransferase and Na(+)/K(+) ATPase loci and compared to phenotypic transformations measured by changes in cellular morphology and colony formation in agar. Both cellular transformations had characteristics distinct from the somatic mutations observed at the two loci. Morphological transformation was observed after a time comparable to that of somatic mutation but at a frequency that was 25- to 540-fold higher. Transformants capable of colony formation in agar were detected at a frequency of 10(-5)-10(-6), but not until 32-75 population doublings after carcinogen treatment. Although this frequency of transformation is comparable to that of somatic mutation, the detection time required is much longer than the optimal expression time of conventionally studied somatic mutations. Neoplastic transformation of hamster embryo cells has been described as a multistep, progressive process. Various phenotypic transformations of cells after carcinogen treatment may represent different stages in this progressive transformation. The results are discussed in this context and the role of mutagenesis in the transition between various stages is considered. Neoplastic transformation may be initiated by a mutational change, but it cannot be described completely by a single gene mutational event involving a dominant, codominant, or X-linked recessive locus. Neoplastic transformation induced by chemical carcinogens is more complex than a single gene mutational process. Thus, this comparative study does not give experimental support to predictions of the carcinogenic potential of chemicals based on a simple extrapolation of the results obtained from conventional somatic mutation assays.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D001580 Benzopyrenes A class of chemicals that contain an anthracene ring with a naphthalene ring attached to it. Benzpyrene
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

J C Barrett, and P O Ts'o
April 1982, Radiation research,
J C Barrett, and P O Ts'o
January 1988, Annals of the New York Academy of Sciences,
J C Barrett, and P O Ts'o
May 1984, Federation proceedings,
J C Barrett, and P O Ts'o
September 1973, Journal of theoretical biology,
J C Barrett, and P O Ts'o
October 2018, International journal of cancer,
J C Barrett, and P O Ts'o
July 2022, Environmental toxicology and pharmacology,
J C Barrett, and P O Ts'o
December 1976, The American journal of pathology,
J C Barrett, and P O Ts'o
September 2018, Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi,
J C Barrett, and P O Ts'o
May 1980, Journal of the National Cancer Institute,
Copied contents to your clipboard!