Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. 2004

Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany.

In Bacillus subtilis, the genes of the branched-chain amino acids biosynthetic pathway are organized in three genetic loci: the ilvBHC-leuABCD (ilv-leu) operon, ilvA, and ilvD. These genes, as well as ybgE, encoding a branched-chain amino acid aminotransferase, were recently demonstrated to represent direct targets of the global transcriptional regulator CodY. In the present study, the transcriptional organization and posttranscriptional regulation of these genes were analyzed. Whereas ybgE and ilvD are transcribed monocistronically, the ilvA gene forms a bicistronic operon with the downstream located ypmP gene, encoding a protein of unknown function. The ypmP gene is also directly preceded by a promoter sharing the regulatory pattern of the ilvA promoter. The ilv-leu operon revealed complex posttranscriptional regulation: three mRNA species of 8.5, 5.8, and 1.2 kb were detected. Among them, the 8.5-kb full-length primary transcript exhibits the shortest half-life (1.2 min). Endoribonucleolytic cleavage of this transcript generates the 5.8-kb mRNA, which lacks the coding sequences of the first two genes of the operon and is predicted to carry a stem-loop structure at its 5' end. This processing product has a significantly longer half-life (3 min) than the full-length precursor. The most stable transcript (half-life, 7.6 min) is the 1.2-kb mRNA generated by the processing event and exonucleolytic degradation of the large transcripts or partial transcriptional termination. This mRNA, which encompasses exclusively the ilvC coding sequence, is predicted to carry a further stable stem-loop structure at its 3' end. The very different steady-state amounts of mRNA resulting from their different stabilities are also reflected at the protein level: proteome studies revealed that the cellular amount of IlvC protein is 10-fold greater than that of the other proteins encoded by the ilv-leu operon. Therefore, differential segmental stability resulting from mRNA processing ensures the fine-tuning of the expression of the individual genes of the operon.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000597 Amino Acids, Branched-Chain Amino acids which have a branched carbon chain. Branched-Chain Amino Acid,Amino Acids, Branched Chain,Acid, Branched-Chain Amino,Acids, Branched-Chain Amino,Amino Acid, Branched-Chain,Branched Chain Amino Acid,Branched-Chain Amino Acids
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA

Related Publications

Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
January 1976, Acta microbiologica Academiae Scientiarum Hungaricae,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
December 2004, Journal of bacteriology,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
April 2015, Journal of bacteriology,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
January 2006, EcoSal Plus,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
December 1988, The Journal of biological chemistry,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
October 1992, Journal of bacteriology,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
September 2023, Essays in biochemistry,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
September 1997, Journal of bacteriology,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
August 1994, Journal of bacteriology,
Ulrike Mäder, and Susanne Hennig, and Michael Hecker, and Georg Homuth
February 2017, The Journal of biological chemistry,
Copied contents to your clipboard!