Sire x herd interactions for weaning weight in beef cattle. 1992

D R Notter, and B Tier, and K Meyer
Animal Genetics and Breeding Unit, Armidale, NSW, Australia.

Weaning weight records of 44,357 Australian Angus calves produced by 1,020 sires in 90 herds were used to evaluate the importance of sire x herd interactions. Models fitted fixed effects of contemporary group (herd-year-date of weighing subclass), sex, calf age, and dam age and random effects of sire or of sire and sire x herd interaction using REML. Effects of standardizing the data, including sire relationships and including dam maternal breeding values (MBV) as a covariate were also investigated. Sire x herd interactions were found (P less than .05) in all cases and, in the most complete model, accounted for 3.3% of phenotypic variance. Across-herd heritabilities ranged from .19 to .28. Differential nonrandom mating among herds seemed to occur in the data. Significant sire x herd effects were observed for dam MBV, and adjustment for dam MBV yielded the smallest estimates of interaction variance and across-herd heritability. If sire x herd interactions were due only to genotype x environment interaction, within-herd heritabilities would range from .33 to .49. These estimates are larger than previously reported estimates. Thus, unreported environmental effects common to progeny of individual sires may also be involved in the observed interaction but could not be disentangled from true genotype x environment interaction effects using these data. Results of these analyses suggest that some accommodation of sire x herd interaction effects on weaning weight may be needed in beef cattle genetic evaluations, but a compelling case for development of herd-specific breeding value prediction cannot be made.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D001947 Breeding The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants. Breedings
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014886 Weaning Permanent deprivation of breast milk and commencement of nourishment with other food. (From Stedman, 25th ed) Weanings
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio

Related Publications

D R Notter, and B Tier, and K Meyer
June 1985, Journal of animal science,
D R Notter, and B Tier, and K Meyer
September 1980, Journal of animal science,
D R Notter, and B Tier, and K Meyer
February 1970, Journal of animal science,
D R Notter, and B Tier, and K Meyer
May 1979, Journal of animal science,
D R Notter, and B Tier, and K Meyer
December 1984, Journal of animal science,
D R Notter, and B Tier, and K Meyer
March 2022, Journal of animal science,
D R Notter, and B Tier, and K Meyer
September 2022, Genetics, selection, evolution : GSE,
D R Notter, and B Tier, and K Meyer
December 2012, Animal : an international journal of animal bioscience,
Copied contents to your clipboard!