N- and P/Q-type Ca2+ channels regulate synaptic efficacy between spinal dorsolateral funiculus terminals and motoneurons. 2004

Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
Department of Physiology, Biophysics and Neuroscience, Cinvestav-IPN, Mexico City, Mexico.

Ca2+ influx through voltage-gated Ca2+ channels mediates synaptic transmission at numerous central synapses. However, electrophysiological and pharmacological evidence linking Ca+ channel activity with neurotransmitter release in the vertebrate mature spinal cord is scarce. In the current report, we investigated in a slice preparation from the adult turtle spinal cord, the effects of various Ca+ channel antagonists on neurotransmission at terminals from the dorsolateral funiculus synapsing motoneurons. Bath application of tetrodotoxin or NiCl2 prevented the monosynaptic excitatory postsynaptic potentials (EPSPs), and this effect was mimicked by exposure to a zero-Ca2+ solution. Application of polypeptide toxins that block N- and P/Q-type channels (omega-CTx-GVIA and omega-Aga-IVA) reduced the EPSP amplitude in a dose-dependent manner. By analyzing the input resistance and the EPSP time course, and using a paired pulse protocol we determined that both toxins act at presynaptic level to modulate neurotransmitter release. RT-PCR studies showed the expression of N- and P/Q-type channel mRNAs in the turtle spinal cord. Together, these results indicate that N- and P/Q-type Ca2+ channels may play a central role in the regulation of neurotransmitter release in the adult turtle spinal cord.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014426 Turtles Any reptile including tortoises, fresh water, and marine species of the order Testudines with a body encased in a bony or cartilaginous shell consisting of a top (carapace) and a bottom (plastron) derived from the ribs. Sea Turtles,Terrapins,Tortoises,Sea Turtle,Terrapin,Tortoise,Turtle,Turtle, Sea,Turtles, Sea
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
March 2009, The Journal of comparative neurology,
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
January 2004, Journal of neurophysiology,
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
March 2019, Molecular and cellular neurosciences,
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
June 2010, Toxicon : official journal of the International Society on Toxinology,
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
January 2005, FEBS letters,
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
February 2008, Acta physiologica (Oxford, England),
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
April 2013, Neuropharmacology,
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
April 1994, Science (New York, N.Y.),
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
October 2005, The Journal of physiology,
Justo Aguilar, and Lourdes Escobedo, and Wendy Bautista, and Ricardo Felix, and Rodolfo Delgado-Lezama
June 2008, Synapse (New York, N.Y.),
Copied contents to your clipboard!