Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. 2004

Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.

Oxidative stress leads to the up-regulation of many antioxidant enzymes including Cu,Zn superoxide dismutase (SOD1) via transcriptional mechanisms; however, few examples of posttranslational regulation are known. The copper chaperone for SOD1 (CCS) is involved in physiological SOD1 activation, and its primary function is thought to be delivery of copper to the enzyme. Data presented here are consistent with a previously uncharacterized function for CCS in the SOD1 pathway, namely mediating enzyme activation in response to increases in oxygen tension. Activity assays with pure proteins and cell extracts reveal that O(2) (or superoxide) is required for activation of SOD1 by CCS. Dose-response studies with a translational blocking agent demonstrate that the cellular oxidative response to O(2) is multitiered: existing apo-pools of SOD1 are activated by CCS in the early response, followed by increasing expression of SOD1 protein with persistent oxidative stress. This CCS function provides oxidant-responsive posttranslational regulation of SOD1 activity and may be relevant to a wide array of physiological stresses that involve a sudden elevation of oxygen availability.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000332 Aerobiosis Life or metabolic reactions occurring in an environment containing oxygen. Aerobioses
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
August 2009, The Journal of biological chemistry,
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
May 2000, Mammalian genome : official journal of the International Mammalian Genome Society,
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
August 1999, Structure (London, England : 1993),
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
September 2004, Experimental biology and medicine (Maywood, N.J.),
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
April 2004, Proceedings of the National Academy of Sciences of the United States of America,
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
March 2000, Proceedings of the National Academy of Sciences of the United States of America,
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
September 1998, The Journal of biological chemistry,
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
August 2017, Metallomics : integrated biometal science,
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
December 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Nina M Brown, and Andrew S Torres, and Peter E Doan, and Thomas V O'Halloran
September 2003, The Journal of biological chemistry,
Copied contents to your clipboard!