Development of high-affinity choline transport sites in rat forebrain: a quantitative autoradiography study with [3H]hemicholinium-3. 1992

H K Happe, and L C Murrin
Department of Pharmacology, University of Nebraska Medical Center, Omaha 68198-6260.

The development of cholinergic terminals in rat brain has been quantitatively analyzed by [3H]hemicholinium-3 autoradiography. [3H]Hemicholinium-3 binds to high affinity choline transport sites, a specific marker for cholinergic neurons. In neonatal animals, kinetic and pharmacologic binding characteristics and regional distribution of [3H]hemicholinium-3 sites are consistent with specific cholinergic localization, as in the adult. The distribution of cholinergic terminals is described in the adult rat brain and during development, including heterogeneity of binding within several regions such as the striatum, nucleus accumbens, olfactory tubercle, cortex, and hippocampus. Early development and maturation vary greatly between brain regions. At embryonic day E18 and day 0, specific binding density is high only in the medial habenula. Development occurs primarily during the postnatal period in most brain regions examined. Many brain regions exhibit a lull in development between days 5 and 10, although the rate of development is highly region specific. Specific binding increases 2-12-fold between day 5 and adult animals, with adult density being achieved anywhere from day 15 to after day 21. The ontogeny of [3H]hemicholinium-3 binding sites generally occurs in a rostral to caudal direction. In the striatal body the characteristic lateral to medial gradient of binding site density is apparent by day 5, and development is more rapid in the lateral striatum. Patches of dense [3H]hemicholinium-3 binding coincident with acetylcholinesterase are observed on day 5 in the caudal striatum. The various patterns of cholinergic terminal development suggest that factors regulating cholinergic development are regional and complex.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D006426 Hemicholinium 3 A potent inhibitor of the high affinity uptake system for CHOLINE. It has less effect on the low affinity uptake system. Since choline is one of the components of ACETYLCHOLINE, treatment with hemicholinium can deplete acetylcholine from cholinergic terminals. Hemicholinium 3 is commonly used as a research tool in animal and in vitro experiments. Hemicholinium
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H K Happe, and L C Murrin
June 1984, European journal of pharmacology,
H K Happe, and L C Murrin
October 1983, Neuroscience letters,
H K Happe, and L C Murrin
November 1996, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!