Inhibition of L-type Ca(2+) current in Guinea pig ventricular myocytes by cisapride. 2004

Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
Division of Cardiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan, ROC. cechiang@vghtpe.gov.tw

The effect of cisapride on L-type Ca(2+) current (I(Ca,L)) was studied in guinea pig ventricular myocytes using a whole-cell voltage-clamp technique and a conventional action potential recording method. Myocytes were held at -40 mV, and internally dialyzed and externally perfused with Na(+)- and K(+)-free solutions; cisapride elicited a concentration-dependent block of peak I(Ca,L), with a half-maximum inhibition concentration (IC(50)) of 46.9 microM. There was no shift in the reversal potential, nor any change in the shape of the current-voltage relationship of I(Ca,L) in the presence of cisapride. Inhibition of cisapride was not associated with its binding to serotonin or to alpha-adrenergic receptors because ketanserin, SB203186, and prazosin had no effect on the inhibitory action of cisapride on I(Ca,L). Cisapride elicited a tonic block and a use-dependent block of I(Ca,L). These blocking effects were voltage dependent as the degree of inhibition at -40 mV was greater than that at -70 mV. Cisapride shifted the steady-state inactivation curve of I(Ca,L) in the negative direction, but had no effect on the steady-state activation curve. Cisapride also delayed the kinetics of recovery of I(Ca,L) from inactivation. At a slow stimulation frequency (0.1 Hz), the action potential duration in guinea pig papillary muscles showed biphasic effects; it was prolonged by lower concentrations of cisapride, but shortened by higher concentrations. These findings suggest that cisapride preferentially binds to the inactivated state of L-type Ca(2+) channels. The inhibitory effect of cisapride on I(Ca,L) might play an important role in its cardiotoxicity under pathophysiological conditions, such as myocardial ischemia.

UI MeSH Term Description Entries
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions
D020117 Cisapride A substituted benzamide used for its prokinetic properties. It is used in the management of gastroesophageal reflux disease, functional dyspepsia, and other disorders associated with impaired gastrointestinal motility. (Martindale The Extra Pharmacopoeia, 31st ed) Propulsid,R-51619,R 51619,R51619
D020746 Calcium Channels, L-Type Long-lasting voltage-gated CALCIUM CHANNELS found in both excitable and non-excitable tissue. They are responsible for normal myocardial and vascular smooth muscle contractility. Five subunits (alpha-1, alpha-2, beta, gamma, and delta) make up the L-type channel. The alpha-1 subunit is the binding site for calcium-based antagonists. Dihydropyridine-based calcium antagonists are used as markers for these binding sites. Dihydropyridine Receptors,L-Type Calcium Channels,L-Type VDCC alpha-1 Subunit,L-Type Voltage-Dependent Calcium Channel,Long-Lasting Calcium Channel,Long-Lasting Calcium Channels,Receptors, Dihydropyridine,Dihydropyridine Receptor,L-Type Calcium Channel,L-Type VDCC,L-Type VDCC alpha-2 Subunit,L-Type VDCC beta Subunit,L-Type VDCC delta Subunit,L-Type VDCC gamma Subunit,L-Type Voltage-Dependent Calcium Channels,Calcium Channel, L-Type,Calcium Channel, Long-Lasting,Calcium Channels, L Type,Calcium Channels, Long-Lasting,Channel, Long-Lasting Calcium,L Type Calcium Channel,L Type Calcium Channels,L Type VDCC,L Type VDCC alpha 1 Subunit,L Type VDCC alpha 2 Subunit,L Type VDCC beta Subunit,L Type VDCC delta Subunit,L Type VDCC gamma Subunit,L Type Voltage Dependent Calcium Channel,L Type Voltage Dependent Calcium Channels,Long Lasting Calcium Channel,Long Lasting Calcium Channels,Receptor, Dihydropyridine,VDCC, L-Type

Related Publications

Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
July 1993, The Journal of physiology,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
April 2015, Journal of ginseng research,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
December 2004, American journal of physiology. Cell physiology,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
June 1992, The Journal of general physiology,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
April 2012, The Journal of physiology,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
August 1999, Journal of cardiovascular pharmacology,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
November 2015, Journal of pharmacological sciences,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
October 1993, The American journal of physiology,
Chern-En Chiang, and Tsui-Min Wang, and Hsiang-Ning Luk
August 2000, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!