Expression of p21(WAF1) and p53 and polymorphism of p21(WAF1) gene in gastric carcinoma. 2004

Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
Institute of Oncology, Nanhua University, Changsheng Xilu, Hengyang 421001, Hunan Province, China.

OBJECTIVE To investigate the relationship between expression of p21(WAF1) and p53 gene, and to evaluate the deletion and polymorphism of p21(WAF1) gene in gastric carcinoma (GC). METHODS Expression of p21 and p53 proteins, and deletion and polymorphism of p21 gene in GC were examined by streptavidin-peroxidase conjugated method (SP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) respectively. RESULTS The expression of p21 and p53 was found in 100% (20/20) and 0% (0/20) of normal gastric mucosae(NGM), 92.5% (37/40) and 15.0% (6/40) of dysplasia (DP) and 39.8% (43/108) and 56.5% (61/108) of GC, respectively. The positive rate of p21 in GC was lower than that in NGM and DP (P<0.05), while the positive rate of p53 in GC was higher than that in NGM and DP (P<0.05). p21 and p53 were significantly expressed in 63.3% (19/30) and 36.7% (11/30), 35.0% (14/40) and 77.5% (31/40), 26.7% (4/15) and 80.0% (12/15), 30.8% (4/13) and 30.8% (4/13), and 20.0% (2/10) and 30.0% (3/10) of well-differentiated, poorly-differentiated, undifferentiated carcinomas, mucoid carcinomas and signet ring cell carcinomas. The expression of p21 in well-differentiated carcinomas was significantly higher than that in poorly-differentiated, un-differentiated, mucoid carcinomas and signet ring cell carcinomas (P<0.05). Contrarily, The expression of p53 was increased from well-differentiated to poorly-differentiated and un-differentiated carcinomas (P<0.05). The expression of p21 and p53 in paired primary and metastatic GC (35.3% and 70.6%) was different from non-metastatic GC (62.5% and 42.5%) markedly (P<0.05). The expression of p21 in invasive superficial muscle (60.0%) was higher than that in invasive deep muscle or total layer (35.2%) (P<0.05) and was higher in TNM stages I (60.0%) and II (56.2%) than in stages III (27.9%) and IV (22.2%) (P<0.05), whereas the expression of p53 did not correlate to invasion depth or TNM staging (P>0.05). The exoression patterns of p53+/p21-, and of p53-/p21+ were found in 5.0% and 82.5% of DP. There was a significant correlation between expression of p21 and p53 (P<0.05). But there was no significant correlation between expression of both in GC (P>0.05). There was no deletion in exon 2 of p21 gene in 30 cases of GC and 45 cases of non-GC, but polymorphism of p21 gene at exon 2 was found in 26.7% (8/30) of GC and 8.9% (4/45) of non-GC, a significant difference was found between GC and non-GC (P<0.05). There was no significant relation between p21 expression of polymorphism (37.5%, 3/8) and non-polymorphism (45.5%, 10/22) in GC (P>0.05). CONCLUSIONS The loss of p21 protein and abnormal expression of p53 are related to carcinogenesis, differentiation and metastasis of GC. The expression of p21 is related to invasion and clinical staging in GC intimately. The expression of p21 protein depends on p53 protein largely in NGM and DP, but not in GC. No deletion of p21 gene in exon 2 can be found in GC. The polymorphism of p21 gene might be involved in gastric carcinogenesis.There is no significant association between polymorphism of p21 gene and expression of p21 protein.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D005260 Female Females
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013274 Stomach Neoplasms Tumors or cancer of the STOMACH. Cancer of Stomach,Gastric Cancer,Gastric Neoplasms,Stomach Cancer,Cancer of the Stomach,Gastric Cancer, Familial Diffuse,Neoplasms, Gastric,Neoplasms, Stomach,Cancer, Gastric,Cancer, Stomach,Cancers, Gastric,Cancers, Stomach,Gastric Cancers,Gastric Neoplasm,Neoplasm, Gastric,Neoplasm, Stomach,Stomach Cancers,Stomach Neoplasm
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53

Related Publications

Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
August 1998, International journal of cancer,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
December 1999, The Journal of pathology,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
January 2010, Hepato-gastroenterology,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
September 2001, Cancer letters,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
June 1997, American journal of clinical pathology,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
August 1998, Clinical immunology and immunopathology,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
October 2000, Zhonghua bing li xue za zhi = Chinese journal of pathology,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
March 1997, Hepatology (Baltimore, Md.),
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
December 2001, Histopathology,
Hai-Long Xie, and Qi Su, and Xiu-Sheng He, and Xiao-Qiu Liang, and Jian-Guo Zhou, and Yin Song, and Yi-Qin Li
January 1997, Anticancer research,
Copied contents to your clipboard!