Membrane and network theta-rhythm generation in hippocampal slices. 2004

S V Karnup
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia. skarn001@umaryland.edu

The hippocampal rhythms observed in vivo are the result of a complex interplay between cellular and synaptic properties within the hippocampus, and extra-hippocampal tonic as well as periodic inputs. For the stable rhythm to occur, the hippocampal circuitry should have the potential to oscillate at the specific frequencies. The in vitro studies revealed multiple mechanisms supporting the generation of the theta rhythm, which is the main operational mode of the hippocampus. In the hippocampus and related structures cellular membranes can oscillate at theta rhythm when they are depolarized to near-threshold membrane potentials; membranes are also adjusted to resonate with the external signal applied at theta frequency. Synaptically connected hippocampal network alone can generate theta rhythm when a necessary tonic excitation is provided. Finally, rhythmic inputs in theta range from the septum and entorhinal cortex have a propensity to synchronize oscillations in the whole hippocampal formation and associated structures to operate in a unified mode of activity. Based on the results obtained in slices and slice cultures, the present review shows this multilevel hierarchy, which serves to guarantee easy occurrence and reliable maintenance of the theta rhythm in the hippocampus.

UI MeSH Term Description Entries
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013826 Theta Rhythm Brain waves characterized by a frequency of 4-7 Hz, usually observed in the temporal lobes when the individual is awake, but relaxed and sleepy. Rhythm, Theta,Rhythms, Theta,Theta Rhythms
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron
Copied contents to your clipboard!