[Ultrastructural mechanism of the long-term potentiation of synaptic transmission]. 2004

D A Moshkov, and L L Pavlik
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino State University, Pushchino. moshkov@menja.net

A review. The data concerning the structural changes that accompany long-term potentiation (LTP) of synaptic transmission are analyzed. A bulk of morphological studies is aimed at searching for quantitative and qualitative structural LTP signs and elucidating the involvement of cytoskeleton in their formation. The role of cytoskeletal protein actin in synaptic structural and functional modification is discussed. On the basis of experimental evidence obtained by the authors a proposal is made that actin is involved into the LTP not only as a contractile protein but as a cable which strengthen the electrotonic properties of the synapses.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term

Related Publications

D A Moshkov, and L L Pavlik
September 1998, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
D A Moshkov, and L L Pavlik
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
D A Moshkov, and L L Pavlik
January 1991, Annual review of neuroscience,
D A Moshkov, and L L Pavlik
September 1995, Journal of neurophysiology,
D A Moshkov, and L L Pavlik
December 1976, Science (New York, N.Y.),
D A Moshkov, and L L Pavlik
February 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D A Moshkov, and L L Pavlik
January 1988, Journal of neurophysiology,
D A Moshkov, and L L Pavlik
July 1978, Brain research,
D A Moshkov, and L L Pavlik
November 1988, Science (New York, N.Y.),
D A Moshkov, and L L Pavlik
November 1995, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!