The derivation of direction selectivity in the striate cortex. 2004

Matthew R Peterson, and Baowang Li, and Ralph D Freeman
Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720-2020, USA.

In the central visual pathway of binocular animals, the property of directional selectivity (DS) is first exhibited in striate cortex. In this study, we sought to determine the neural circuitry underlying the transformation from non-DS neurons to DS cortical cells. In a well established model, DS receptive fields (RFs) are derived from the sum of two non-DS inputs with 90 degrees (quadrature) spatiotemporal phase differences. We explored possible input sources for this model, which include non-DS simple cells and lateral geniculate nucleus (LGN) neurons, by examination of spatiotemporal RFs of single cells and of pairs of cells. We find that distributions of non-DS simple RFs do not match the temporal predictions of the quadrature model because of a lack of long-latency responses. The long-latency inputs could potentially arise from lagged LGN afferents. However, analysis of cell pairs indicates that DS cells receive cortical input from non-DS simple cells for both short- and long-latency components, with temporal phase differences typically <90 degrees. Furthermore, the distribution of minimum phase differences needed to generate DS cells overlaps that exhibited by non-DS simple cells. Considered together, these results are consistent with a linear model whereby DS simple cells are formed from simple-cell inputs, with temporal phase differences often less than quadrature.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

Matthew R Peterson, and Baowang Li, and Ralph D Freeman
January 1988, Vision research,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
November 1992, Visual neuroscience,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
October 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
March 1996, Journal of neurophysiology,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
November 1975, Journal of neurophysiology,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
March 1978, The Journal of physiology,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
June 1990, Journal of neurophysiology,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
July 1981, The Journal of physiology,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
February 1974, Experimental brain research,
Matthew R Peterson, and Baowang Li, and Ralph D Freeman
August 1994, Proceedings. Biological sciences,
Copied contents to your clipboard!