Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. 2004

Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
Division of Structural Biology, Biozentrum, University of Basel, Basel, Switzerland.

Cellular adhesion by classical cadherins depends critically on the exact proteolytic removal of their N-terminal prosequences. In this combined solution NMR and X-ray crystallographic study, the consequences of propeptide cleavage of an epithelial cadherin construct (domains 1 and 2) were followed at atomic level. At low protein concentration, the N-terminal processing induces docking of the tryptophan-2 side-chain into a binding pocket on the same molecule. At high concentration, cleavage induces dimerization (KD=0.72 mM, k(off)=0.7 s(-1)) and concomitant intermolecular exchange of the betaA-strands and the tryptophan-2 side-chains. Thus, the cleavage represents the switch from a nonadhesive to the functional form of cadherin.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D015820 Cadherins Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body. Cadherin,E-Cadherins,Epithelial-Cadherin,Liver Cell Adhesion Molecules,N-Cadherins,Neural Cadherin,P-Cadherins,Uvomorulin,Cadherin-1,Cadherin-2,Cadherin-3,E-Cadherin,Epithelial-Cadherins,Liver Cell Adhesion Molecule,N-Cadherin,Neural Cadherins,P-Cadherin,Placental Cadherins,Cadherin 1,Cadherin 2,Cadherin 3,Cadherin, Neural,Cadherins, Neural,Cadherins, Placental,E Cadherin,E Cadherins,Epithelial Cadherin,Epithelial Cadherins,N Cadherin,N Cadherins,P Cadherin,P Cadherins
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
August 1994, Journal of molecular biology,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
February 1993, Quarterly reviews of biophysics,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
March 1997, Structure (London, England : 1993),
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
January 1992, Annual review of biophysics and biomolecular structure,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
May 2008, Chirality,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
January 2019, Methods in enzymology,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
January 2018, Methods in enzymology,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
October 2007, Current opinion in chemical biology,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
September 2022, PNAS nexus,
Daniel Häussinger, and Thomas Ahrens, and Thomas Aberle, and Jürgen Engel, and Jörg Stetefeld, and Stephan Grzesiek
February 2000, Molecular pathology : MP,
Copied contents to your clipboard!