Effects of dopamine D1 receptor full agonists in rats trained to discriminate SKF 38393. 2004

S D Gleason, and J M Witkin
Neuroscience Discovery Research, The Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis 46285-0510, USA. Gleason_Scott_D@lilly.com

Although the dopaminergic pharmacology of the D1 receptor full agonists, dinapsoline, dihydrexidine and the prodrug ABT-431 have been studied, no information is available on the ability of these agonists to substitute for the D1 agonist SKF 38393 in rats trained to discriminate this compound from vehicle. The present study was designed to characterize the potential D1 discriminative stimulus effects of these compounds. The selective dopamine D1-receptor agonists dihydrexidine [(+/-)-trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a] phenanthridine hydrochloride], ABT-431 [(-)-trans-9,10-diacetyloxy-2-propyl-4,5,5a,6,7,11b-hexahydro-3-thia-5-azacyclopent-1-ena[c]phenanthrene hydrochloride], the diacetyl prodrug derivative of A-86929, and dinapsoline [9-dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline] were studied in rats trained to discriminate racemic SKF 38393 [(+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol], a selective D1 receptor partial agonist from vehicle. All of the agonists substituted fully for the discriminative stimulus effects of SKF 38393. The rank order of potency for substitution was ABT-431 > dinapsoline > dihydrexidine > SKF 38393. The D1 receptor antagonist, SCH 23390, blocked the discriminative stimulus effects of SKF 38393. The D3/D2-receptor agonist PD 128,907 [S(+)-(4aR,10bR)-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]-benzopyrano[4,3-b]-1,4-oxazin-9-ol] did not substitute up to doses that produced profound rate-suppressant effects. Thus, consistent with their D1 receptor pharmacology, the full D1-receptor agonists substituted completely for the discriminative stimulus of SKF 38393.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008297 Male Males
D009042 Motivation Those factors which cause an organism to behave or act in either a goal-seeking or satisfying manner. They may be influenced by physiological drives or by external stimuli. Incentives,Disincentives,Expectations,Disincentive,Expectation,Incentive,Motivations
D009284 Naphthols Naphthalene derivatives carrying one or more hydroxyl (-OH) groups at any ring position. They are often used in dyes and pigments, as antioxidants for rubber, fats, and oils, as insecticides, in pharmaceuticals, and in numerous other applications. Hydroxynaphthalene,Hydroxynaphthalenes,Naphthol
D010617 Phenanthridines
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

S D Gleason, and J M Witkin
November 2003, Clinical and experimental hypertension (New York, N.Y. : 1993),
S D Gleason, and J M Witkin
August 1997, Pharmacology, biochemistry, and behavior,
S D Gleason, and J M Witkin
April 1985, Pharmacology, biochemistry, and behavior,
S D Gleason, and J M Witkin
December 1985, European journal of pharmacology,
S D Gleason, and J M Witkin
September 1995, The Journal of pharmacy and pharmacology,
S D Gleason, and J M Witkin
April 1993, European journal of pharmacology,
S D Gleason, and J M Witkin
November 2013, Neurobiology of learning and memory,
S D Gleason, and J M Witkin
January 1985, Psychopharmacology,
Copied contents to your clipboard!