Testosterone action on skeletal muscle. 2004

Karen L Herbst, and Shalender Bhasin
UCLA School of Medicine, Charles R. Drew University, Los Angeles, California 90059, USA.

OBJECTIVE To highlight recent data demonstrating direct anabolic effects of androgens on the mammalian skeletal muscle and review the mechanisms by which testosterone regulates body composition. RESULTS Testosterone increases lean body mass and decreases fat mass in young men; the magnitude of the changes induced by testosterone in lean and fat mass are correlated with testosterone dose and the prevalent testosterone concentrations. Older men are as responsive to the anabolic effects of testosterone on the muscle as young men, but have increased frequency of adverse events with higher testosterone doses. This reciprocal change in lean and fat mass induced by androgens is best explained by the hypothesis that androgens promote the commitment of mesenchymal pluripotent cells into myogenic lineage and inhibit adipogenesis through an androgen receptor mediated pathway. Resident muscle satellite cells increase in number with testosterone administration forming myoblasts leading to greater numbers of myonuclei in larger myofibers. Testosterone administration is associated with increased size of motor neurons. The roles of 5-alpha reduction and aromatization of testosterone into dihydrotestosterone and estradiol, respectively, in mediating testosterone effects on body composition are poorly understood. CONCLUSIONS Testosterone induces skeletal muscle hypertrophy by multiple mechanisms, including its effects in modulating the commitment of pluripotent mesenchymal cells. These changes in skeletal muscle lead to improved muscle strength and leg power; however, further studies are needed to determine the effects of testosterone on physical function and health-related outcomes in sarcopenia associated with aging and chronic illness.

UI MeSH Term Description Entries
D008297 Male Males
D001823 Body Composition The relative amounts of various components in the body, such as percentage of body fat. Body Compositions,Composition, Body,Compositions, Body
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular
D039904 Pluripotent Stem Cells Cells that can give rise to cells of the three different GERM LAYERS. Stem Cells, Pluripotent,Pluripotent Stem Cell,Stem Cell, Pluripotent

Related Publications

Karen L Herbst, and Shalender Bhasin
May 1983, Archives internationales de pharmacodynamie et de therapie,
Karen L Herbst, and Shalender Bhasin
July 2001, The Journal of endocrinology,
Karen L Herbst, and Shalender Bhasin
August 1962, Endocrinology,
Karen L Herbst, and Shalender Bhasin
October 2008, International journal of sports medicine,
Karen L Herbst, and Shalender Bhasin
January 1948, The Journal of physiology,
Karen L Herbst, and Shalender Bhasin
January 1974, European neurology,
Karen L Herbst, and Shalender Bhasin
July 1973, The Journal of physiology,
Karen L Herbst, and Shalender Bhasin
June 1955, British journal of pharmacology and chemotherapy,
Karen L Herbst, and Shalender Bhasin
February 1971, Circulation research,
Karen L Herbst, and Shalender Bhasin
February 1988, Italian journal of neurological sciences,
Copied contents to your clipboard!