Inorganic phosphate speeds loaded shortening in rat skinned cardiac myocytes. 2004

Aaron C Hinken, and Kerry S McDonald
Department of Medical Pharmacology and Physiology, University of Missouri, One Hospital Drive, MA415 MSB, Columbia, MO 65212, USA.

Force generation in striated muscle is coupled with inorganic phosphate (P(i)) release from myosin, because force falls with increasing P(i) concentration ([P(i)]). However, it is unclear which steps in the cross-bridge cycle limit loaded shortening and power output. We examined the role of P(i) in determining force, unloaded and loaded shortening, power output, and rate of force development in rat skinned cardiac myocytes to discern which step in the cross-bridge cycle limits loaded shortening. Myocytes (n = 6) were attached between a force transducer and position motor, and contractile properties were measured over a range of loads during maximal Ca(2+) activation. Addition of 5 mM P(i) had no effect on maximal unloaded shortening velocity (V(o)) (control 1.83 +/- 0.75, 5 mM added P(i) 1.75 +/- 0.58 muscle lengths/s; n = 6). Conversely, addition of 2.5, 5, and 10 mM P(i) progressively decreased force but resulted in faster loaded shortening and greater power output (when normalized for the decrease in force) at all loads greater than approximately 10% isometric force. Peak normalized power output increased 16% with 2.5 mM added P(i) and further increased to a plateau of approximately 35% with 5 and 10 mM added P(i). Interestingly, the rate constant of force redevelopment (k(tr)) progressively increased from 0 to 10 mM added P(i), with k(tr) approximately 360% greater at 10 mM than at 0 mM added P(i). Overall, these results suggest that the P(i) release step in the cross-bridge cycle is rate limiting for determining shortening velocity and power output at intermediate and high relative loads in cardiac myocytes.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D016474 Weight-Bearing The physical state of supporting an applied load. This often refers to the weight-bearing bones or joints that support the body's weight, especially those in the spine, hip, knee, and foot. Load-Bearing,Axial Loading,Loadbearing,Weightbearing,Axial Loadings,Load Bearing,Weight Bearing
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D032383 Myocytes, Cardiac Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC). Cardiomyocytes,Muscle Cells, Cardiac,Muscle Cells, Heart,Cardiac Muscle Cell,Cardiac Muscle Cells,Cardiac Myocyte,Cardiac Myocytes,Cardiomyocyte,Cell, Cardiac Muscle,Cell, Heart Muscle,Cells, Cardiac Muscle,Cells, Heart Muscle,Heart Muscle Cell,Heart Muscle Cells,Muscle Cell, Cardiac,Muscle Cell, Heart,Myocyte, Cardiac

Related Publications

Aaron C Hinken, and Kerry S McDonald
May 2000, The Journal of physiology,
Aaron C Hinken, and Kerry S McDonald
October 2001, The Journal of physiology,
Aaron C Hinken, and Kerry S McDonald
September 1998, The Journal of physiology,
Aaron C Hinken, and Kerry S McDonald
December 1993, Circulation research,
Aaron C Hinken, and Kerry S McDonald
October 2000, Circulation research,
Aaron C Hinken, and Kerry S McDonald
February 1989, The American journal of physiology,
Aaron C Hinken, and Kerry S McDonald
January 1993, The Journal of physiology,
Aaron C Hinken, and Kerry S McDonald
December 2011, The journals of gerontology. Series A, Biological sciences and medical sciences,
Copied contents to your clipboard!