The hairless promoter is differentially regulated by thyroid hormone in keratinocytes and neuroblastoma cells. 2004

Andrew Engelhard, and Angela M Christiano
Department of Dermatology, Columbia University, New York, NY 10032, USA.

The hair cycle is an extraordinarily complex process relying on spatially and temporally coordinated integration of intercellular signaling, cell division and death, cell migration, and gene expression. The hairless gene (hr) is expressed with hair-cycle-dependent kinetics, and pathogenic mutations in hr are responsible for the hairless and rhino phenotypes in mice and atrichia with papular lesions in humans. In addition to its expression in the skin and hair follicle, hr is also highly expressed in the brain, yet the factors governing its differential cell-type-specific expression have not yet been defined. A thyroid hormone responsive element was previously identified in the rat hr promoter which confers thyroid hormone (T3) responsiveness to heterologous promoter constructs; however, prior studies have not focused on the hr promoter itself. The hairless promoter was cloned, and it is shown that the hr promoter is transactivated by T3 in neuroblastoma cells but not in keratinocytes. Therefore, while T3 has a significant role in the regulation of neuronal expression of hairless, its upregulation in keratinocytes is T3 independent. Furthermore, hr is subject to cell-type-specific negative autoregulation, inhibiting the activity of its own promoter in keratinocytes but not neuroblastoma cells. These findings illustrate a molecular distinction between the regulation of hr expression in defined cell populations.

UI MeSH Term Description Entries
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

Andrew Engelhard, and Angela M Christiano
September 1996, The Journal of biological chemistry,
Andrew Engelhard, and Angela M Christiano
January 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
Andrew Engelhard, and Angela M Christiano
April 2017, The Journal of endocrinology,
Andrew Engelhard, and Angela M Christiano
October 1999, Proceedings of the National Academy of Sciences of the United States of America,
Andrew Engelhard, and Angela M Christiano
January 1995, Anticancer research,
Andrew Engelhard, and Angela M Christiano
November 1994, The Journal of biological chemistry,
Andrew Engelhard, and Angela M Christiano
December 2002, Toxicology,
Andrew Engelhard, and Angela M Christiano
November 2009, Journal of immunology (Baltimore, Md. : 1950),
Andrew Engelhard, and Angela M Christiano
April 2004, Brain research. Molecular brain research,
Andrew Engelhard, and Angela M Christiano
November 2002, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!