Tumor necrosis factor alpha inhibits insulin-like growth factor I-induced hematopoietic cell survival and proliferation. 2004

Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
University of Illinois, Laboratory of Immunophysiology, Department of Animal Sciences, 207 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, Illinois 61801, USA.

Proinflammatory cytokines, such as TNFalpha and IL-1beta, are both cytostatic and cytotoxic. In contrast, IGF-I promotes proliferation and survival of hematopoietic progenitor cells. In this report, we establish that both the cytostatic and cytotoxic activity of TNFalpha on murine myeloid progenitor cells is only evident in the presence of IGF-I. We first confirmed that IGF-I (100 ng/ml) increases DNA synthesis and reduces apoptosis in murine myeloid progenitor cells induced to die by growth factor withdrawal. TNFalpha inhibits, in a dose-dependent fashion from 0.1 to 10 ng/ml, both activities of IGF-I. TNFalpha activity was not detected in the absence of IGF-I. Another proinflammatory cytokine, IL-1beta, did not inhibit IGF-I-induced activity in murine factor-dependent cell progenitor-1/Mac-1 cells. However, the ability of TNFalpha to impair IGF-I-induced DNA synthesis in human promyeloid cells extends to IL-1beta. Statistically significant inhibition of all these events occurs at very low concentrations of 1 ng/ml or less. These results support the general concept that proinflammatory cytokines impair the actions of hormones on hematopoietic cells, leading to IGF-I receptor resistance.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
September 1996, Journal of cellular physiology,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
July 1999, Endocrinology,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
January 2010, Endocrine journal,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
March 2007, Journal of neuroscience research,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
December 2002, American journal of physiology. Endocrinology and metabolism,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
November 2000, Cellular and molecular biology (Noisy-le-Grand, France),
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
October 1997, Endocrinology,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
August 1999, Archives of pharmacal research,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
October 1999, The Journal of biological chemistry,
Wen Hong Shen, and Jian-Hua Zhou, and Suzanne R Broussard, and Rodney W Johnson, and Robert Dantzer, and Keith W Kelley
June 2004, Journal of cellular physiology,
Copied contents to your clipboard!