Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. 2004

S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
Dairy Products Research Centre, Teagasc, Moorepark, Fermoy, County Cork, Ireland.

Phage K is a polyvalent phage of the Myoviridae family which is active against a wide range of staphylococci. Phage genome sequencing revealed a linear DNA genome of 127,395 bp, which carries 118 putative open reading frames. The genome is organized in a modular form, encoding modules for lysis, structural proteins, DNA replication, and transcription. Interestingly, the structural module shows high homology to the structural module from Listeria phage A511, suggesting intergenus horizontal transfer. In addition, phage K exhibits the potential to encode proteins necessary for its own replisome, including DNA ligase, primase, helicase, polymerase, RNase H, and DNA binding proteins. Phage K has a complete absence of GATC sites, making it insensitive to restriction enzymes which cleave this sequence. Three introns (lys-I1, pol-I2, and pol-I3) encoding putative endonucleases were located in the genome. Two of these (pol-I2 and pol-I3) were found to interrupt the DNA polymerase gene, while the other (lys-I1) interrupts the lysin gene. Two of the introns encode putative proteins with homology to HNH endonucleases, whereas the other encodes a 270-amino-acid protein which contains two zinc fingers (CX(2)CX(22)CX(2)C and CX(2)CX(23)CX(2)C). The availability of the genome of this highly virulent phage, which is active against infective staphylococci, should provide new insights into the biology and evolution of large broad-spectrum polyvalent phages.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D006094 Gram-Positive Bacteria Bacteria which retain the crystal violet stain when treated by Gram's method. Gram Positive Bacteria
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013204 Staphylococcus Phages Viruses whose host is Staphylococcus. Staphylococcal Phages,Staphylococcal Bacteriophage,Staphylococcal Bacteriophages,Staphylococcus Phage,Bacteriophage, Staphylococcal,Bacteriophages, Staphylococcal,Phage, Staphylococcal,Phage, Staphylococcus,Phages, Staphylococcal,Phages, Staphylococcus,Staphylococcal Phage
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
March 2010, Virology,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
August 2021, Transcription,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
June 2019, Microbiology resource announcements,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
October 2000, Journal of molecular microbiology and biotechnology,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
May 1999, Systematic and applied microbiology,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
January 1983, Mikrobiologiia,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
January 2023, Viruses,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
June 2006, Applied and environmental microbiology,
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
October 1994, Microbiology (Reading, England),
S O'Flaherty, and A Coffey, and R Edwards, and W Meaney, and G F Fitzgerald, and R P Ross
May 1995, Microbiology (Reading, England),
Copied contents to your clipboard!