Force, sarcomere shortening velocity and ATPase activity. 2003

Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.

We have tested the hypothesis that the transition rate (G) of the cardiac XB from the strong force generating state to the weak state is a linear function V of the sarcomere (VSL); furthermore, we tested whether the ATPase rate of the two isoforms of myosin can be held responsible for the difference between V0 of rat cardiac trabeculae containing V1 isomyosin versus those containing V3 isomyosin. METHODS V1 isomyosin was induced by thyroid hormone treatment of the rats for 2 weeks, V3 isomyosin by PTU treatment for 1 month. Force was measured with a strain gauge in trabeculae from the rat right ventricle in K-H solution ([Ca]o=1.5 mM, 25 degrees C). Sarcomere length (SL) was measured with laser diffraction techniques. Twitch force at constant SL, and the force response to shortening at constant VSL (0-8 microm/s; deltaSL 50-100 nm) were measured at varied time during the twitch. RESULTS The force response to shortening consisted of a fast initial exponential decline (tau = 2 ms) followed by a slow decrease of F. The instantaneous difference (deltaF) between isometric force (FM) and the declining force depended on shortening duration (deltat), VSL and instantaneous FM: deltaF = G1 x FM x deltat x VSL x (1-VSL/VMAX), where VMAX is the unloaded VSL and G1 was 6.15 +/- 2.12 microm(-1) (mean +/- s.d.; n=6). deltaF/FM was independent of the time onset of shortening. G1 of V1 and V3 trabeculae did not differ. V0 of V1 and V3 trabeculae differed 2-2.5 fold, as did both the ATPase rate and the velocity of actin sliding in a motility assay of the myosin purified from V1 or V3 hearts. The temperature dependence of the ATPase rate (Q10: 4.03 and 4.33, respectively; n.s.) was similar to that of V0 that has previously been reported for predominantly V1 trabeculae. Cross-linking of actin to myosin with the short chain cross linker EDC increased the ATPase rate of the two isomyosins (200-fold and 600-fold respectively) to exactly the same final level and reduced their Q10 by 50%. CONCLUSIONS The linear interrelation between deltaF and VSL is consistent with feedback, whereby XB kinetics depends on VSL. This feedback provides an integrated description of cardiac muscle mechanics and energetics. The results, also, suggests that it is unlikely that the hydrolytic domain of the cross bridge determines V0 and warrant ongoing experiments to investigate the role of the actin binding domain of the XB in cardiac sarcomere kinetics. In order to further investigate the role of the actin binding domain, we have expressed chimeric cardiac myosin, co-assembled with MLC, by mutual substitution of actin binding loop on alpha MHC and beta MHC.

UI MeSH Term Description Entries
D007313 Insecta Members of the phylum ARTHROPODA composed or organisms characterized by division into three parts: head, thorax, and abdomen. They are the dominant group of animals on earth with several hundred thousand different kinds. Three orders, HEMIPTERA; DIPTERA; and SIPHONAPTERA; are of medical interest in that they cause disease in humans and animals. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p1). Insects,Insect
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011914 Rats, Inbred BN An inbred strain of rat that is widely used in a variety of research areas such as the study of ASTHMA; CARCINOGENESIS; AGING; and LEUKEMIA. Rats, Inbred Brown Norway,Rats, BN,BN Rat,BN Rat, Inbred,BN Rats,BN Rats, Inbred,Inbred BN Rat,Inbred BN Rats,Rat, BN,Rat, Inbred BN
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning

Related Publications

Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
October 1984, The Journal of physiology,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
May 1990, Circulation research,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
December 2012, Journal of muscle research and cell motility,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
January 1988, Advances in experimental medicine and biology,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
January 1993, Advances in experimental medicine and biology,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
August 2000, Annals of biomedical engineering,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
September 1992, Acta physiologica Scandinavica,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
June 1979, The Journal of physiology,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
June 1979, Biochemical medicine,
Henk E D J ter Keurs, and Nathan Deis, and Amir Landesberg, and The-Tin T Nguyen, and Leonid Livshitz, and Bruno Stuyvers, and Mei Luo Zhang
February 1997, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!