Plasminogen regulates pro-opiomelanocortin processing. 2004

N Wang, and L Zhang, and L Miles, and J Hoover-Plow
Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Cleveland Clinic Foundation, Lerner Research Institute, Cleveland, OH 44195, USA.

BACKGROUND Plasminogen-deficient mice exhibit behavioral differences in response to stress, including a markedly reduced acoustic startle reflex response compared with wild-type (WT) littermates. The acoustic startle reflex activates the hypothalamic-pituitary axis and is modulated by these hormones. OBJECTIVE The purpose of this study was to investigate whether plasminogen plays a role in the processing of hormones in the hypothalamic-pituitary axis. METHODS In this study the concentration of plasma, pituitary, and brain hypothalamic-pituitary axis hormones and precursor processing was examined in WT and plasminogen deficient (Plg-/-) mice before and after acoustic startle reflex testing. RESULTS Plasma adrenocorticotropic hormone (ACTH), beta-endorphin and alpha-melanocyte stimulating hormone were elevated after acoustic startle reflex testing in both WT and (Plg-/-) mice. However, in the Plg-/- mice, beta-endorphin values were 43, 35, and 45% lower in the plasma, pituitary, and whole brain, respectively, compared with the WT mice. Plasmin readily degraded precursor peptides, the 23-kDa precursor, beta-lipotropin, and ACTH, when presented as purified proteins or as the secretory products of mouse pituitary cells (AtT-20). The precursor peptide, 23 kDa, for beta-endorphin and alpha-melanocyte stimulating hormone was reduced in the pituitaries from the Plg-/- mice, and the mRNA for Plg was found in pituitaries from WT mice. Infusion of beta-endorphin and alpha-melanocyte stimulating hormone into the brain of Plg-/- mice increased acoustic startle reflex. CONCLUSIONS The results of this study show that plasmin is involved in the processing of hormones derived from the pro-opiomelanocortin precursor in the intermediate pituitary. A deficiency of plasminogen reduces processing of beta-endorphin and alpha-melanocyte stimulating hormone, and interferes with normal brain function.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D009074 Melanocyte-Stimulating Hormones Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS. MSH,Melanocyte Stimulating Hormone,Melanocyte-Stimulating Hormone,Melanophore Stimulating Hormone,Melanotropin,MSH (Melanocyte-Stimulating Hormones),Melanophore-Stimulating Hormone,Hormone, Melanocyte Stimulating,Hormone, Melanocyte-Stimulating,Hormone, Melanophore Stimulating,Melanocyte Stimulating Hormones,Stimulating Hormone, Melanocyte,Stimulating Hormone, Melanophore
D010958 Plasminogen Precursor of plasmin (FIBRINOLYSIN). It is a single-chain beta-globulin of molecular weight 80-90,000 found mostly in association with fibrinogen in plasma; plasminogen activators change it to fibrinolysin. It is used in wound debriding and has been investigated as a thrombolytic agent. Profibrinolysin,Glu-Plasminogen,Glutamic Acid 1-Plasminogen,Glutamyl Plasminogen,1-Plasminogen, Glutamic Acid,Glu Plasminogen,Glutamic Acid 1 Plasminogen,Plasminogen, Glutamyl
D011333 Pro-Opiomelanocortin A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP). POMC,Pro-Opiocortin,ACTH-Endorphin Precursor,ACTH-beta-Lipotropin Precursor,Corticotropin-beta-Lipotropin Precursor,Endorphin-ACTH Precursor,Opiocortin,Pre-POMC,Pre-pro-opiocortin,Preproopiomelanocortin,Pro-ACTH-Endorphin,Pro-Opio-Melanocortin,Proopiocortin,Proopiomelanocortin,ACTH Endorphin Precursor,ACTH beta Lipotropin Precursor,Corticotropin beta Lipotropin Precursor,Endorphin ACTH Precursor,Pre POMC,Pre pro opiocortin,Pro ACTH Endorphin,Pro Opio Melanocortin,Pro Opiocortin,Pro Opiomelanocortin
D012022 Reflex, Acoustic Intra-aural contraction of tensor tympani and stapedius in response to sound. Acoustic Reflex
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D000324 Adrenocorticotropic Hormone An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP). ACTH,Adrenocorticotropin,Corticotropin,1-39 ACTH,ACTH (1-39),Adrenocorticotrophic Hormone,Corticotrophin,Corticotrophin (1-39),Corticotropin (1-39),Hormone, Adrenocorticotrophic,Hormone, Adrenocorticotropic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001615 beta-Endorphin A 31-amino acid peptide that is the C-terminal fragment of BETA-LIPOTROPIN. It acts on OPIOID RECEPTORS and is an analgesic. Its first four amino acids at the N-terminal are identical to the tetrapeptide sequence of METHIONINE ENKEPHALIN and LEUCINE ENKEPHALIN. Endorphin, beta,beta-Endorphin (1-31),beta Endorphin

Related Publications

N Wang, and L Zhang, and L Miles, and J Hoover-Plow
June 1989, The International journal of neuroscience,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
January 1991, Cell biophysics,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
June 2008, Journal of neuroendocrinology,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
October 1991, European journal of biochemistry,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
February 1989, The American journal of physiology,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
April 1991, Endocrinology,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
January 1987, Functional neurology,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
June 1989, Nature,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
April 1989, Journal of neurochemistry,
N Wang, and L Zhang, and L Miles, and J Hoover-Plow
September 1997, Journal of neuroimmunology,
Copied contents to your clipboard!