Oxidation of bisphenol A, 17beta-estradiol, and 17alpha-ethynyl estradiol and byproduct estrogenicity. 2004

Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
Department of Civil and Environmental Engineering, Arizona State University, Tempe, Arizona 85287-5306, USA.

A human breast cancer cell line (MCF-7) was used to investigate the cumulative estrogenicity profiles elicited during the oxidation of three estrogenic compounds [bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynyl estradiol (EE2)]. High-performance liquid chromatography (HPLC) with a method detection limit (MDL) of approximately 1 nM was used to measure the initial and final concentrations of test compounds during oxidation. Both chlorination and ozonation removed from 75% to >99% of the test compounds in distilled water. Increasing contact time and chlorination dose improved compound removal. Chlorination byproducts of BPA, E2, and EE2 elicited low levels of estrogenicity over an extended period of time. For equivalent molar oxidant dosages, ozone and chlorine had comparable residual proliferative effect values and >99% loss of the parent compounds. For oxidation studies of estrogenic chemicals, ammonium chloride was found to adequately quench residual chlorine without interfering with cell culture assay. Oxidation of test compounds with chlorine and ozone resulted in a similar estrogenicity trend, with a relative higher level of estrogenicity elicited during the early phases of oxidation, which gradually dissipated over the extended exposure time to a stable point. Oxidation with ozone resulted in the rapid transformation of test compounds, reaching a stabilized estrogenic level in 10 min, whereas for chlorination it took more than 120 min for elicited estrogenicity to stabilize.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010126 Ozone The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE). Ground Level Ozone,Low Level Ozone,Tropospheric Ozone,Level Ozone, Ground,Level Ozone, Low,Ozone, Ground Level,Ozone, Low Level,Ozone, Tropospheric
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D010968 Plasticizers Materials incorporated mechanically in plastics (usually PVC) to increase flexibility, workability or distensibility; due to the non-chemical inclusion, plasticizers leach out from the plastic and are found in body fluids and the general environment. Plasticizer
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002713 Chlorine An element with atomic symbol Cl, atomic number 17, and atomic weight 35, and member of the halogen family. Chlorine Gas,Chlorine-35,Cl2 Gas,Chlorine 35,Gas, Chlorine,Gas, Cl2
D003280 Contraceptives, Oral, Synthetic Oral contraceptives which owe their effectiveness to synthetic preparations.
D004326 Drinking The consumption of liquids. Water Consumption,Water Intake,Drinkings
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen

Related Publications

Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
August 2003, Water research,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
January 2010, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
September 1962, Cancer chemotherapy reports,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
July 2002, Toxicological sciences : an official journal of the Society of Toxicology,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
October 1967, Arzneimittel-Forschung,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
January 1972, Xenobiotica; the fate of foreign compounds in biological systems,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
January 2008, Journal of hazardous materials,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
September 2008, Biodegradation,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
March 2008, Environmental technology,
Absar Alum, and Yeomin Yoon, and Paul Westerhoff, and Morteza Abbaszadegan
January 1976, Journal of steroid biochemistry,
Copied contents to your clipboard!