Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae. 2004

Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
School of Biological Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.

Yeast species have undergone extensive genome reorganization in their evolutionary history, including variations in chromosome number and large chromosomal rearrangements, such as translocations. To determine directly the contribution of chromosomal translocations to the whole organism's fitness, we devised a strategy to construct in Saccharomyces cerevisiae collinear "evolutionary mimics" of other species originally differing by the presence of reciprocal translocations in their genome. A modification of the Cre/loxP system was used to create in S. cerevisiae the translocations detected in the sibling species Saccharomyces mikatae IFO 1815 and 1816. Competition experiments under different physiological conditions showed that the translocated strains of S. cerevisiae consistently outcompeted the reference S. cerevisiae strain with no translocation, both in batch and chemostat culture, especially under glucose limitation. These results indicate that chromosomal translocations in Saccharomyces may have an adaptive significance, and lend support to a model of fixation by natural selection of reciprocal translocations in Saccharomyces species.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012641 Selection, Genetic Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population. Natural Selection,Genetic Selection,Selection, Natural
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic

Related Publications

Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
February 2004, Genetics,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
April 2007, Molecular microbiology,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
January 2013, Mikrobiologiia,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
March 1994, Mutation research,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
February 2011, Genetika,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
September 1982, Molecular and cellular biology,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
May 1992, Genetics,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
January 2021, International journal of molecular sciences,
Isabelle Colson, and Daniela Delneri, and Stephen G Oliver
September 2021, Genetics in medicine : official journal of the American College of Medical Genetics,
Copied contents to your clipboard!