Differential messenger RNA expression of complexins in mouse brain. 2004

Whitney Freeman, and A Jennifer Morton
Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.

Complexins (CPLXs) are small isomeric proteins that bind to the soluble NSF-attachment protein receptor (SNARE) complex and modulate neurotransmitter release. Two isoforms of CPLX exist in the brain, CPLXI and CPLXII. These are differentially distributed in the cortex and cerebellum, with CPLXI found in axosomatic terminals and CPLXII in axodendritic terminals. Since in cortex and cerebellum axosomatic terminals are inhibitory and axodendritic terminals are excitatory, it has been assumed that CPLXI modulates inhibitory and CPLXII modulates excitatory transmitter release. Here we used in situ hybridisation to study the mRNA distribution of CPLXI and CPLXII in mouse brain. We show that while CPLXs are expressed in distinct cell populations, they do not segregate with either particular neurotransmitters, or different classes of transmitter action. For example, while CPLXII is the dominant isoform in the output (glutamatergic excitatory) neurons of the cortex, it is also the dominant isoform in medium spiny (GABAergic inhibitory) neurons of the striatum. We suggest that the functional role of CPLXs depends not only on the identity of the neurotransmitter, but also upon the circuitry connecting the neurons in which they are expressed. Thus, the predominant expression of CPLXII in neurons of the basal ganglia and cortex suggests a role in cognition, emotional behaviour and control of voluntary movement, while the pattern of CPLXI expression suggests a primary role in motor learning programs and sensory processing.

UI MeSH Term Description Entries
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Whitney Freeman, and A Jennifer Morton
June 1996, Neuroscience,
Whitney Freeman, and A Jennifer Morton
December 1979, Cell,
Whitney Freeman, and A Jennifer Morton
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
Whitney Freeman, and A Jennifer Morton
June 1994, Transplantation proceedings,
Whitney Freeman, and A Jennifer Morton
June 1994, Journal of neurochemistry,
Whitney Freeman, and A Jennifer Morton
May 1993, Journal of neuroscience research,
Whitney Freeman, and A Jennifer Morton
December 1976, Cell,
Copied contents to your clipboard!