Modulation of motor cortex excitability after upper limb immobilization. 2004

Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
Dipartimento di Scienze Neurologiche e della Visione, Sezione di Neurologia, Ospedale Policlinico G.B. Rossi, piazzale Scuro, 37134 Verona, Italy. gi.zanette@libero.it

OBJECTIVE To examine the mechanisms of disuse-induced plasticity following long-term limb immobilization. METHODS We studied 9 subjects, who underwent left upper limb immobilization for unilateral wrist fractures. All subjects were examined immediately after splint removal. Cortical motor maps, resting motor threshold (RMT), motor evoked potential (MEP) latency and MEP recruitment curves were studied from abductor pollicis brevis (APB) and flexor carpi radialis (FCR) muscles with single pulse transcranial magnetic stimulation (TMS). Paired pulse TMS was used to study intracortical inhibition and facilitation. Compound muscle action potentials (CMAPs) and F waves were obtained after median nerve stimulation. In 4/9 subjects the recording was repeated after 35-41 days. RESULTS CMAP amplitude and RMT were reduced in APB muscle on the immobilized sides in comparison to the non-immobilized sides and controls after splint removal. CMAP amplitude and RMT were unchanged in FCR muscle. MEP latency and F waves were unchanged. MEP recruitment was significantly greater on the immobilized side at rest, but the asymmetry disappeared during voluntary muscle contraction. Paired pulse TMS showed an imbalance between inhibitory and excitatory networks, with a prevalence of excitation on the immobilized sides. A slight, non-significant change in the strength of corticospinal projections to the non-immobilized sides was found. TMS parameters were not correlated with hand dexterity. These abnormalities were largely normalized at the time of retesting in the four patients who were followed-up. CONCLUSIONS Hyperexcitability occurs within the representation of single muscles, associated with changes in RMT and with an imbalance between intracortical inhibition and facilitation. These findings may be related to changes in the sensory input from the immobilized upper limb and/or in the discharge properties of the motor units. CONCLUSIONS Different mechanisms may contribute to the reversible neuroplastic changes, which occur in response to long-term immobilization of the upper-limbs.

UI MeSH Term Description Entries
D007103 Immobilization The restriction of the MOVEMENT of whole or part of the body by physical means (RESTRAINT, PHYSICAL) or chemically by ANALGESIA, or the use of TRANQUILIZING AGENTS or NEUROMUSCULAR NONDEPOLARIZING AGENTS. It includes experimental protocols used to evaluate the physiologic effects of immobility. Hypokinesia, Experimental,Experimental Hypokinesia,Experimental Hypokinesias,Hypokinesias, Experimental
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies

Related Publications

Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
July 1994, Brain research,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
July 2001, Neuroscience letters,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
November 2022, NPJ Parkinson's disease,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
May 2011, Psychopharmacology,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
March 2008, Psychopharmacology,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
July 2005, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
November 2004, Stroke,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
May 2005, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
July 2011, Psychopharmacology,
Giampietro Zanette, and Paolo Manganotti, and Antonio Fiaschi, and Stefano Tamburin
December 2003, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Copied contents to your clipboard!