Induction of spermidine/spermine N1-acetyltransferase in breast cancer tissues treated with the polyamine analogue N1, N11-diethylnorspermine. 2004

Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD 21231-1000, USA.

OBJECTIVE The polyamine analogue, N1, N11-diethylnorspermine (DENSpm), is currently being evaluated in clinical trials for the treatment of solid tumors. The response of solid tumors to this drug has been associated with superinduction of the polyamine catabolic enzyme, spermine/spermidine N1-acetyltransferase (SSAT). Therefore, to estimate the response of breast cancers to DENSpm, we measured induction of SSAT in breast cancer explants treated in vitro with this polyamine analogue. METHODS Expression of SSAT protein was evaluated by immunohistochemistry in tissue explants from 38 invasive breast cancer tumors incubated in vitro in the presence (or absence) of DENSpm. In addition, SSAT enzymatic activity was measured in tissue explants from four tumors with high cellularity. RESULTS SSAT expression was significantly increased in 30 of 38 tumor samples treated with DENSpm compared to untreated controls. This induction of SSAT protein expression was found specifically in neoplastic cells of the treated samples, and was seen in all histologic patterns (ductal, lobular, and mucinous) of breast cancer examined. In tumor samples evaluated for changes in SSAT enzymatic activity, these changes correlated closely with changes in protein expression. CONCLUSIONS Immunohistochemical staining for induction of SSAT correlates with measures of enzymatic activity in a small sample where measurements were possible and suggests that immunohistochemistry may be used for predicting response of breast cancers to DENSpm. A high proportion of breast cancers induced SSAT in response to DENSpm, supporting the continued consideration of this class of agents for treatment of breast cancer.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013096 Spermine A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
July 2004, Molecular cancer therapeutics,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
April 1999, Molecular pharmacology,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
January 1998, The Journal of biological chemistry,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
February 2012, Amino acids,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
April 2003, The Journal of biological chemistry,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
April 2012, Molecular and cellular biology,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
October 1995, Journal of cellular physiology,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
October 1985, The Biochemical journal,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
May 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Edward Gabrielson, and Ellen Tully, and Amy Hacker, and Anthony E Pegg, and Nancy E Davidson, and Robert A Casero
January 1989, Archives of biochemistry and biophysics,
Copied contents to your clipboard!