| D008184 |
Luteal Cells |
PROGESTERONE-producing cells in the CORPUS LUTEUM. The large luteal cells derive from the GRANULOSA CELLS. The small luteal cells derive from the THECA CELLS. |
Lutein Cells,Granulosa-Luteal Cells,Granulosa-Lutein Cells,Large Luteal Cells,Small Luteal Cells,Theca-Luteal cells,Theca-Lutein Cells,Cell, Granulosa-Luteal,Cell, Granulosa-Lutein,Cell, Large Luteal,Cell, Luteal,Cell, Lutein,Cell, Small Luteal,Cell, Theca-Lutein,Cells, Granulosa-Luteal,Cells, Granulosa-Lutein,Cells, Large Luteal,Cells, Luteal,Cells, Lutein,Cells, Small Luteal,Cells, Theca-Lutein,Granulosa Luteal Cells,Granulosa Lutein Cells,Granulosa-Luteal Cell,Granulosa-Lutein Cell,Large Luteal Cell,Luteal Cell,Luteal Cell, Large,Luteal Cell, Small,Luteal Cells, Large,Luteal Cells, Small,Lutein Cell,Small Luteal Cell,Theca Luteal cells,Theca Lutein Cells,Theca-Luteal cell,Theca-Lutein Cell,cell, Theca-Luteal,cells, Theca-Luteal |
|
| D005260 |
Female |
|
Females |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D012333 |
RNA, Messenger |
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. |
Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated |
|
| D012738 |
Sex Hormone-Binding Globulin |
A glycoprotein migrating as a beta-globulin. Its molecular weight, 52,000 or 95,000-115,000, indicates that it exists as a dimer. The protein binds testosterone, dihydrotestosterone, and estradiol in the plasma. Sex hormone-binding protein has the same amino acid sequence as ANDROGEN-BINDING PROTEIN. They differ by their sites of synthesis and post-translational oligosaccharide modifications. |
Sex Steroid-Binding Protein,Testosterone-Estradiol Binding Globulin,Binding Globulin, Testosterone-Estradiol,Globulin, Sex Hormone-Binding,Globulin, Testosterone-Estradiol Binding,Hormone-Binding Globulin, Sex,Sex Hormone Binding Globulin,Sex Steroid Binding Protein,Steroid-Binding Protein, Sex,Testosterone Estradiol Binding Globulin |
|
| D017398 |
Alternative Splicing |
A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. |
RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested |
|
| D049109 |
Cell Proliferation |
All of the processes involved in increasing CELL NUMBER including CELL DIVISION. |
Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular |
|