Human immunodeficiency virus type 1 Gag assembly through assembly intermediates. 2004

Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
Kitasato Institute of Life Sciences, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan. morikawa@lisci.kitasato-u.ac.jp

Human immunodeficiency virus Gag protein self-assembles into spherical particles, and recent reports suggest the formation of assembly intermediates during the process. To understand the nature of such assembly intermediates along with the mechanism of Gag assembly, we employed expression in Escherichia coli and an in vitro assembly reaction. When E. coli expression was performed at 37 degrees C, Gag predominantly assembled to a high order of multimer, apparently equivalent to the virus-like particles obtained following Gag expression in eukaryotic cells, through the formation of low orders of multimer characterized with a discreet sedimentation value of 60 S. Electron microscopy confirmed the presence of spherical particles in the E. coli cells. In contrast, expression at 30 degrees C resulted in the production of only the 60 S form of Gag multimer, and crescent-shaped structures or small patches with double electron-dense layers were accumulated, but no complete particles. In vitro assembly reactions using purified Gag protein, when performed at 37 degrees C, also produced the high order of Gag multimers with some 60 S multimers, whereas the 30 degrees C reaction produced only the 60 S multimers. However, when the 60 S multimers were cross-linked so as not to allow conformational changes, in vitro assembly reactions at 37 degrees C did not produce any higher order of multimers. ATP depletion did not halt Gag assembly in the E. coli cells, and the addition of GroEL-GroES to in vitro reactions did not facilitate Gag assembly, indicating that conformational changes rather than protein refolding by chaperonins, induced at 37 degrees C, were solely responsible for the Gag assembly observed here. We suggest that Gag assembles to a capsid through the formation of the 60 S multimer, possibly a key intermediate of the assembly process, accompanied with conformational changes in Gag.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015683 Gene Products, gag Proteins coded by the retroviral gag gene. The products are usually synthesized as protein precursors or POLYPROTEINS, which are then cleaved by viral proteases to yield the final products. Many of the final products are associated with the nucleoprotein core of the virion. gag is short for group-specific antigen. Viral gag Proteins,gag Antigen,gag Gene Product,gag Gene Products,gag Polyproteins,gag Protein,gag Viral Proteins,Gene Product, gag,Retroviral Antigen gag Protein,gag Antigens,gag Gene Related Protein,gag Polyprotein,Antigen, gag,Antigens, gag,Polyprotein, gag,Polyproteins, gag,Protein, gag,Proteins, Viral gag,Proteins, gag Viral,Viral Proteins, gag,gag Proteins, Viral
D015750 Genes, gag DNA sequences that form the coding region for proteins associated with the viral core in retroviruses. gag is short for group-specific antigen. gag Genes,gag Gene,Gene, gag
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D019065 Virus Assembly The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE. Viral Assembly,Assembly, Viral,Assembly, Virus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
December 2005, Journal of virology,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
July 1993, Journal of virology,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
April 2013, The Journal of infectious diseases,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
March 2009, Journal of virology,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
March 2000, Journal of virology,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
April 2011, Journal of virology,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
July 2005, Journal of virology,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
September 1994, Medical microbiology and immunology,
Yuko Morikawa, and Toshiyuki Goto, and Fumitaka Momose
May 2005, The Journal of biological chemistry,
Copied contents to your clipboard!