LPS-induced degeneration of dopaminergic neurons of substantia nigra in rats. 2004

Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022.

In order to investigate the neurotoxicity of lipopolysaccharide (LPS) on the dopaminergic neurons of substantia nigra and the pathogenesis of Parkinson disease, LPS was stereotaxically infused into substantia nigra (SN). At different dosages and different time points with 5 microg LPS, the damage of the dopaminergic neurons in SN was observed by using tyrosine-hydroxylase (TH) immunohistochemical staining. The results showed that 14 days after injection of 0.1 microg to 10 microg LPS into the rat SN, TH-positive (TH+) neurons in the SN were decreased by 5%, 15%, 20%, 45 %, 96% and 99% respectively. After injection of 5 microg LPS, as compared with the control groups, TH+ neurons began to decrease at 3rd day and obviously decrease at 14th day, only 5% of total cells, and almost disappeared 30 days later. The results suggested that LPS could induce the degeneration of dopaminergic neurons in the SN in a dose- and time-dependent manner.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010302 Parkinson Disease, Secondary Conditions which feature clinical manifestations resembling primary Parkinson disease that are caused by a known or suspected condition. Examples include parkinsonism caused by vascular injury, drugs, trauma, toxin exposure, neoplasms, infections and degenerative or hereditary conditions. Clinical features may include bradykinesia, rigidity, parkinsonian gait, and masked facies. In general, tremor is less prominent in secondary parkinsonism than in the primary form. (From Joynt, Clinical Neurology, 1998, Ch38, pp39-42) Atherosclerotic Parkinsonism,Secondary Parkinsonism,Symptomatic Parkinson Disease,Parkinson Disease, Secondary Vascular,Parkinson Disease, Symptomatic,Parkinsonism, Secondary,Parkinsonism, Symptomatic,Secondary Vascular Parkinson Disease,Parkinsonism, Atherosclerotic,Secondary Parkinson Disease,Symptomatic Parkinsonism
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras

Related Publications

Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
January 2000, Neuroscience,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
July 2007, Neurochemistry international,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
August 2009, Neuroscience letters,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
May 1985, Life sciences,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
September 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
January 2007, Molecular neurodegeneration,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
June 2007, Neurobiology of aging,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
October 2016, Journal of chemical neuroanatomy,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
January 2007, Progress in brain research,
Gang Li, and Shenggang Sun, and Xuebing Cao, and Jiangxin Zhong, and E'tang Tong
March 2001, Journal of neurophysiology,
Copied contents to your clipboard!