Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. 1992

B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140.

Mice immunized with attenuated Salmonella typhimurium, strain SL3235, while protected against virulent challenge, are unable to mount in vivo and in vitro antibody responses to non-Salmonella antigens, such as tetanus toxoid and sheep red blood cells, and exhibit profoundly suppressed responses to B and T cell mitogens. Suppression of antibody responses is mediated by macrophage (M phi)-released soluble factors, and is completely reversed by treatment with interleukin (IL)-4. The present report identifies the suppressor factor as nitric oxide (NO), and provides evidence for a mechanism by which IL-4 abrogates suppression. Suppressed antibody responses correlated with high levels of NO secretion by splenocytes of SL3235-immunized mice. NO production was observed only in cultures consisting of the adherent cell fraction of immune splenocytes. Further, immunosuppression was reversed by NG-monomethyl-L-arginine (NMLA), a competitive inhibitor of NO synthesis, and was completely blocked by the addition of excess L-arginine. Treatment with IL-4, or anti-interferon (IFN)-gamma monoclonal antibody (mAb), also abrogated suppression. Optimal reversal of suppression was observed only when NMLA, IL-4, or anti-IFN-gamma mAb, was added at day 0 of the 5-day plaque-forming cell assay. Treatment with either IL-4 or anti-IFN-gamma mAb also lead to a sharp inhibition of NO production by immune spleen cells. Moreover, the addition of IL-4 to splenic adherent M phi inhibited their ability to generate NO. Our data characterize an immunoregulatory pathway, involving IFN-gamma and NO, by which M phi mediate immunosuppression and identify IL-4 as a potent inhibitor of this pathway.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
July 1994, Journal of leukocyte biology,
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
November 1996, Immunology,
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
May 1997, Biochemical Society transactions,
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
May 1994, Journal of immunology (Baltimore, Md. : 1950),
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
March 1992, Mutation research,
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
November 1998, Microbial pathogenesis,
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
January 1992, Pharmacological research,
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
December 1999, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
May 1994, The Biochemical journal,
B K al-Ramadi, and J J Meissler, and D Huang, and T K Eisenstein
July 1997, European journal of pharmacology,
Copied contents to your clipboard!