Activation of deoxycytidine kinase by protein kinase inhibitors and okadaic acid in leukemic cells. 2004

Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
Laboratory of Physiological Chemistry, Christian de Duve Institute of Cellular Pathology, Avenue Hippocrate 75, UCL-ICP 7539, B-1200 Brussels, Belgium.

Deoxycytidine kinase (dCK) is a key enzyme in the deoxynucleoside salvage pathway and in the activation of numerous nucleoside analogues used in cancer and antiviral chemotherapy. Recent studies indicate that dCK activity might be regulated through reversible phosphorylation. Here, we report the effects of a large panel of protein kinase inhibitors on dCK activity in the B-leukemia cell line EHEB, both in basal conditions and in the presence of the nucleoside analogue 2-chloro-2'-deoxyadenosine (CdA) which induces activation of dCK. Except staurosporine and H-7 that significantly reduced the activation of dCK by CdA, no specific protein kinase inhibitor diminished basal dCK activity or its activation by CdA. In contrast, genistein, a general protein tyrosine kinase inhibitor, and AG-490, an inhibitor of JAK2 and JAK3, increased basal dCK activity more than two-fold. Two specific inhibitors of the MAPK/ERK pathway, PD-98059 and U-0126, also enhanced dCK activity. These data suggest that the JAK/MAPK pathway could be involved in the regulation of dCK. Moreover, we show that the activity of dCK, raised by CdA, can return to its initial level by treatment with protein phosphatase-2A (PP2A). Accordingly, dCK activity in intact cells increased upon incubation with okadaic acid (OA) at concentrations that should inhibit PP2A, but not protein phosphatase-1. Activation of dCK by protein kinase inhibitors and OA was also observed in CCRF-CEM cells and in chronic lymphocytic leukemia B-lymphocytes, suggesting a general mechanism of post-translational regulation of dCK, which could be exploited to enhance the activation of antileukemic nucleoside analogues.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D017338 Cladribine An antineoplastic agent used in the treatment of lymphoproliferative diseases including hairy-cell leukemia. 2-Chloro-2'-deoxyadenosine,2-Chlorodeoxyadenosine,2'-Deoxy-2-chloroadenosine,Leustatin

Related Publications

Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
October 1996, Biological & pharmaceutical bulletin,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
November 1990, European journal of biochemistry,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
June 2008, Nucleosides, nucleotides & nucleic acids,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
August 1989, Biochemical pharmacology,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
January 1997, Journal of neurochemistry,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
May 1992, Journal of cellular physiology,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
July 1993, European journal of biochemistry,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
March 1989, Biochemical and biophysical research communications,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
January 1992, The American journal of physiology,
Caroline Smal, and Sabine Cardoen, and Luc Bertrand, and Anne Delacauw, and Augustin Ferrant, and Georges Van den Berghe, and Eric Van Den Neste, and Françoise Bontemps
March 1989, Biochemical and biophysical research communications,
Copied contents to your clipboard!