Carcinogen-induced DNA repair in nucleotide-permeable Escherichia coli cells. Analysis of DNA repair induced by carcinogenic K-region epoxides and 1,2,3,4-diepoxybutane. 1978

H W Thielmann, and H Gersbach

Ether-permeabilized (nucleotide-permeable) Escherichia coli cells exhibited DNA excision repair when exposed to the following carcinogenic K-region epoxides: 7-methyl- and 7,12-dimethyl-benz[a]anthracene-5,6-oxide, chrysene-5,6-oxide and benzo[a]pyrene-4,5-oxide. This DNA excision repair was missing in uvr A and uvr B mutant cells. The K-region epoxide phenanthrene-9,10-oxide was ineffective in all E. coli strains tested. In contrast to the K-region epoxides which where found active only in wild type cells, 1,2,3,4-diepoxybutane and the 6,7-epoxides of the tumor promoter TPA (12-O-tetradecanoyl-phorbol-13-acetate) elicited DNA repair in uvrA, uvrB mutant cells as well. Enzymic activities catalyzing particular repair steps were identified by determining a) repair polymerization and b) size reduction of denatured DNA. A) An easily quantifiable effect in E. coli wild type cells was epoxide-induced repair polymerization. None of the K-region epoxides tested stimulated DNA repair synthesis in uvrA, uvrB mutant cells, indicating that the uvrA-, uvrB-controlled UV-endonuclease initiated excision repair by cleaving epoxide-damaged DNA. 1,2,3,4-Diepoxybutane and the TPA-6,7-oxides induced DNA repair polymerization in uvr-deficient cells, although to a lesser extent than in wild type cells, suggesting the involvement of uvr-independent incision steps. None of the epoxides induced repair polymerization in a mutant (polA107) lacking the 5'--3'exonucleolytic activity of DNA polymerase I (exonuclease VI). The absence of any repair polymerization in the polA107 mutant indicates that the exonuclease VI plays a central role in removing epoxide-damaged nucleotides. As evidenced by greatly reduced levels of repair polymerization measured in polA1 cells, DNA polymerase I was the main polymerizing enzyme. b) As a consequence of treatment with 7-methyl-benz[a]anthracene-5,6-oxide, DNA from wild type cells, contrary to uvrA mutant cells, showed size reduction after denaturation and sedimentation in alkaline sucrose gradients. This is explained by repair-specific endonucleolytic cleavage of damaged DNA. The incision required the presence of ATP indicating that functional UV-endonuclease needs ATP as a cofactor.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004986 Ether A mobile, very volatile, highly flammable liquid used as an inhalation anesthetic and as a solvent for waxes, fats, oils, perfumes, alkaloids, and gums. It is mildly irritating to skin and mucous membranes. Diethyl Ether,Ether, Ethyl,Ethyl Ether,Ether, Diethyl
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic

Related Publications

H W Thielmann, and H Gersbach
May 2017, International journal of molecular sciences,
H W Thielmann, and H Gersbach
January 2007, Chemical research in toxicology,
H W Thielmann, and H Gersbach
May 2013, Journal of proteome research,
H W Thielmann, and H Gersbach
October 1980, Radiation research,
H W Thielmann, and H Gersbach
March 1983, Biochemical and biophysical research communications,
H W Thielmann, and H Gersbach
September 1971, Biochimica et biophysica acta,
Copied contents to your clipboard!